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The contributions of asymptomatic infections to herd immunity
and community transmission are key to the resurgence and con-
trol of COVID-19, but are difficult to estimate using current models
that ignore changes in testing capacity. Using a model that incor-
porates daily testing information fit to the case and serology
data from New York City, we show that the proportion of symp-
tomatic cases is low, ranging from 13 to 18%, and that the
reproductive number may be larger than often assumed. Asymp-
tomatic infections contribute substantially to herd immunity, and
to community transmission together with presymptomatic ones.
If asymptomatic infections transmit at similar rates as symp-
tomatic ones, the overall reproductive number across all classes
is larger than often assumed, with estimates ranging from 3.2
to 4.4. If they transmit poorly, then symptomatic cases have a
larger reproductive number ranging from 3.9 to 8.1. Even in this
regime, presymptomatic and asymptomatic cases together com-
prise at least 50% of the force of infection at the outbreak
peak. We find no regimes in which all infection subpopulations
have reproductive numbers lower than three. These findings
elucidate the uncertainty that current case and serology data
cannot resolve, despite consideration of different model struc-
tures. They also emphasize how temporal data on testing can
reduce and better define this uncertainty, as we move forward
through longer surveillance and second epidemic waves. Comple-
mentary information is required to determine the transmissibility
of asymptomatic cases, which we discuss. Regardless, current
assumptions about the basic reproductive number of severe
acute respiratory syndrome coronavirus 2 (SARS-Cov-2) should be
reconsidered.
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S ince the emergence of the novel coronavirus in December
2019 (1), the COVID-19 pandemic has resulted in over 16

million cases and 600,000 deaths worldwide (2). Schools and
universities in the United States are gradually reopening amid
concerns that a second wave of the epidemic may reemerge in
the fall and winter of 2020.

As they craft testing policies and intervention strategies to
mitigate a second wave, public health officials need to better
understand the role that symptomatic and asymptomatic individ-
uals play in the community transmission of COVID-19 and in
the development of herd immunity to the disease. However, fun-
damental epidemiological questions remain poorly understood,
including what fraction of cases are symptomatic and how well
asymptomatic cases can transmit relative to symptomatic ones.
These questions are especially urgent given ambiguity in recent
Centers for Disease Control and Prevention (CDC) guidelines
regarding the testing of asymptomatic individuals (3).

Answering these questions can also provide further insight
on the basic reproductive number of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), and how the virus
would spread in a population in the absence of interventions.
This number, known as R0, is defined as the mean number of

secondary cases arising from a primary case in the absence of
immunity, and is estimated on the basis of a particular epi-
demiological model. Mathematical models for the population
dynamics of COVID-19 incorporate different features such as
asymptomatic and presymptomatic transmission, superspread-
ing, or heterogeneity in susceptibility. A considerable range of
R0 estimates has been reported, ranging from at least 1.5 (4)
to 5.7 (5) in Wuhan. A much narrower range, between two and
three, is frequently cited in the popular press, or assumed when
simulating models (6) or fitting these to data (7, 8). This assump-
tion may be based on the dynamics of COVID-19 in regions
that implemented interventions early (9–13). A more precise
estimate of R0 from a city where substantial transmission was
occurring prior to intervention, such as New York City, would
provide a relevant baseline. Furthermore, if “superspreading”
by a small fraction of symptomatic infections fuels COVID-19
transmission, a precise estimate of the mean number of sec-
ondary cases arising from such an individual may be just as
valuable. A model that precisely estimates the fraction of symp-
tomatic cases may help epidemiologists discern whether either
the overall or symptomatic reproductive numbers are higher than
assumed.

The probability that a COVID-19 infection is symptomatic is
difficult to estimate (14), and a wide range of values have been
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suggested (14–16). Estimates from cruise ship outbreaks (17),
Wuhan evacuees (18), long-term care facilities (19), and contact
tracing of index cases (15) may not be representative of the gen-
eral population. Increases in the testing capacity for COVID-19
over time (9, 20, 21) make population-level estimation of this
probability difficult due to confounding with other parameters
such as the reporting, hospitalization, and fatality rates. When
the testing capacity is limited in the early stages of an outbreak,
severe cases are more likely to be tested, which can bias estimates
of the probability that an infection is symptomatic and of the
fatality rate. Changes in testing capacity over time also confound
the definition itself of asymptomatic individuals in transmission
models, when these are not differentiated from unreported cases.
These changes can also bias the reported deaths attributed to
COVID-19.

These challenges can be improved upon by explicitly incorpo-
rating changes in testing capacity into an epidemiological process
model. While some early models of the COVID-19 outbreak in
Wuhan attempted to take into account changes in testing capac-
ity (21) or differences in reporting rate during periods of the
epidemic (9), the limited information on these trends in Wuhan
meant that they had to be estimated on a coarse temporal scale
(2- to 3-wk intervals) and had to be inferred along with other
parameters in the model. In the United States, many states and
municipalities such as New York City (22, 23) have published
daily estimates of the number of total COVID-19 tests con-
ducted, together with the number of positive COVID-19 tests.
While these data are often used by public health officials to
gauge the spread of the COVID-19 outbreak, they have yet to
be incorporated explicitly into epidemiological models.

We present an epidemiological model that incorporates RT-
PCR testing as an integral process informed by empirical levels.
The explicit consideration of testing allows us to clearly define
asymptomatic individuals as those that will never transition to
displaying symptoms, and to differentiate them from those who
have been unreported because they were not tested. We fit the
model to PCR-confirmed COVID-19 cases in New York City,
using publicly available data provided by the New York State
Department of Public Health (23). The resulting model can
clearly delineate symptomatic and asymptomatic infections inde-
pendently from the reporting rate. We subsequently fit the model
to estimates of prior exposure obtained from a recent serologi-
cal study in New York City (24) to further constrain inference
results.

Our model obtains a precise estimate for the symptomatic
proportion of COVID-19 cases. We show that most COVID-
19 infections are asymptomatic, and that these asymptomatic
infections together with presymptomatic ones substantially drive
community transmission, contributing 50% or more of the total
force of infection. Furthermore, depending on the transmissi-
bility of individual asymptomatic cases relative to symptomatic
ones, either the overall reproductive number or the symptomatic
reproductive number may be higher than typically assumed. Our
results highlight the importance of testing and contact tracing
of asymptomatic individuals, and of making these data publicly
available as health officials prepare for and manage a second
wave.

Results
We present a stochastic epidemiological model (Fig. 1) that
explicitly incorporates daily changes in testing capacity and
the lag between sampling and testing (see Materials and Meth-
ods). The underlying model, referred to hereafter as the
SEPIAR model (Fig. 1A), has a susceptible–exposed–infectious–
recovered (SEIR) structure with compartments for both severe
(hospitalized) and nonsevere symptomatic infections as well
as presymptomatic (P) and asymptomatic (A) infections (thus
SEPIAR). We also consider two nested simplified versions:

one with no presymptomatic transmission (the SEIAR model;
Fig. 1B) and one with no asymptomatic transmission (the SEPIR
model; Fig. 1C). By varying specific parameters weighting the
transmission rate of P and A relative to that of symptomatic
individuals, we can continuously move across these two extreme
structures. Daily reports of the number of tests conducted in
New York City are fed in as a covariate in the testing submodel
(SI Appendix). The model takes into account CDC priorities in
sampling and testing: All hospitalized cases are sampled and
eventually tested, while nonsevere symptomatic individuals are
sampled and tested only if excess capacity is available at the
time of sampling. We also incorporate the retesting of hospital-
ized individuals as they leave the hospital. This model is fit to
observed cases in New York City from March 1, 2020 to June 1,
2020 and to serological estimates of herd immunity in New York
City from March 8, 2020 to April 19, 2020 (Materials and Meth-
ods and SI Appendix). We compare the full model with the two
nested simplified versions. Although all three model structures
are supported by the case data, the model with no asymp-
tomatic transmission is not supported when these data are con-
sidered in conjunction with serology information (SI Appendix,
Table S2).

To evaluate the strength of transmission in asymptomatic cases
relative to symptomatic cases, we construct a Monte Carlo profile
using the full SEPIAR model (SI Appendix, Fig. S5). We iso-
late parameter combinations from the profile that are supported
by the case and serology data, and examine the values of those
combinations. Particular parameters of interest that we focus on
include the proportion of cases that are symptomatic, pS , the
ratio of the transmission rate of asymptomatic individuals to that
of symptomatic individuals, ba, and the reproductive numbers.
We use R0 to denote the symptomatic reproductive number (i.e.,
the mean number of secondary cases arising from each primary
symptomatic case), and use R0NGM to denote the overall repro-
ductive number for the model (i.e., the mean number of cases
arising from a primary infection, where the average considers all
types of infections).

The proportion of COVID-19 cases that are symptomatic is
well identified, with a CI ranging from 12.9 to 17.4% (Fig. 2).
Although a wide range of parameter combinations for the pro-
portion of symptomatic infection are supported by the case data
on its own, a much narrower estimate is obtained when the case
and serology data are considered together (Fig. 2 A and B).
Within this range, estimates of herd immunity are consistent with
the dynamics of observed serology (Fig. 2C), in particular, the
rapid rise in seroprevalence over March and April 2020. We vali-
dated the inference pipeline by fitting the model to two simulated
trajectories from two parameter combinations that are both sup-
ported by the case, serology, and testing data but correspond
to regimes with strong or weak asymptomatic transmission. As
shown in SI Appendix, Fig. S11B, models fit to both of these
trajectories instead of observed cases are able to accurately esti-
mate and recover the proportion of symptomatic cases used in
the simulations.

The overall reproductive number or symptomatic reproductive
number may be larger than is often assumed. From our profile
of the relative asymptomatic transmission rate ba, we identify
two main regimes of transmission that are supported by both the
case and serology data (Fig. 3), in which either R0 orR0NGM is
higher than the two to three range often assumed for COVID-
19. Notably, we find no parameter combinations in which both
reproductive numbers are below three and fall within this range.

In the first regime, asymptomatic individuals transmit at
almost the same rate as symptomatic individuals. That is, ba is
large, even close to one in some parameter combinations. The
overall reproductive number takes on values between 3.2 and 4.4,
and asymptomatic cases substantially contribute to the overall
force of infection (Fig. 4).
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Fig. 1. Model diagrams. (A) The full SEPIAR model used for inference. The model is an extension of an SEIR formulation that considers both presymptomatic
transmission (from compartment P) and asymptomatic transmission (from compartment A). (B) When the strength of presymptomatic transmission bp is set
to zero, the SEPIAR model reduces to the SEIAR model. Since we assume that φU = φE , when bp = 0, the infectious presymptomatic compartment behaves like
an additional exposed compartment. (C) When the strength of asymptomatic transmission ba is set to zero, the SEPIAR model reduces to the SEPIR model.
Individuals in the asymptomatic infectious compartment (A) make no contribution to the force of infection, so asymptomatic individuals essentially recover
after leaving the presymptomatic period (P). In all three panels, circular/elliptical compartments contribute to the force of infection, while rectangular
compartments do not. The green ellipse denotes the point at which severe/hospitalized COVID patients are sampled and enter the testing queue for severe
cases, while the red ellipse denotes the corresponding entry point for the queue for nonsevere symptomatic cases.

In the second regime, asymptomatic individuals transmit at
very low rates relative to symptomatic individuals, with esti-
mates of ba close to zero or, in some parameter combinations,
even equal to zero. Concomitantly, the symptomatic repro-
ductive number is much higher than frequently assumed, tak-
ing on values between 3.9 and 8.1. Nevertheless, even in this
regime, presymptomatic and asymptomatic infections together
contribute at least 50% of the overall force of infection at the
peak of the outbreak.

In both regimes, presymptomatic individuals transmit at
almost the same rate as symptomatic individuals, with estimates
of bp close to one, also making a substantial contribution to the
overall force of infection (Fig. 4).

We also observe a third regime in which both reproductive
numbers are higher than assumed, but, in this regime, presymp-
tomatic individuals transmit at a very low rate, with bp close
to zero. Several combinations in this regime can be observed
in the top right corner of Fig. 3C and in SI Appendix, Fig. S7.
This is also the regime obtained in SI Appendix, Fig. S6 if one
uses the SEIAR model, which assumes that presymptomatic
individuals do not transmit (i.e., bp is fixed at zero). Given previ-
ous evidence of presymptomatic transmission of COVID-19 (25,
26), we focus on the two regimes which incorporate substantial
presymptomatic transmission.

In line with previous studies (27), we estimate a large value
for the initial number of infected and incubating individuals
with COVID-19 in New York City at the start of the simula-
tion on March 1. Parameter combinations that were supported
by the case and serology data ranged from 9,000 to 18,000 ini-
tial infected individuals and 44,000 to 72,000 exposed individuals.

A key question to consider when evaluating the plausibility of
this magnitude of undetected infections is whether it is consis-
tent with no signal of an anomalous number of hospitalizations.
In other words, would this large rise in early infections result in a
corresponding rise in COVID hospitalizations that may not have
been detected as COVID related? We examine this question by
comparing simulated daily hospitalizations from our fitted model
with observed COVID-19 daily hospitalizations in New York
City, as well as with syndrome surveillance reports of respiratory
illness from emergency departments in New York City hospitals
(Fig. 5), which we can use as an indicator for a rise in undetected
hospitalizations. We show that a scenario with a large number of
initial infections on March 1 is indeed consistent with the time at
which observed COVID-19 hospitalizations peak, providing fur-
ther support for this contention. We also find that the imposition
of social distancing on March 17 and the stay-at-home order on
March 22 in New York City resulted in a substantial decrease
in the initial transmission rate. Parameter estimates for the ratio
of the postintervention transmission rate to the preintervention
transmission rate (bq) ranged from 0.134 to 0.240, corresponding
to a 75.98 to 86.62% reduction in the strength of transmission
after the intervention.

Testing strategies and capacity can substantially influence esti-
mates of the infection fatality ratio, or IFR (SI Appendix, Fig.
S12). This metric of outbreak severity is generally defined as the
total number of deaths divided by the total number of cases.
In practice, this ratio is calculated by dividing the total num-
ber of confirmed deaths by the total number of observed cases.
However, depending on the testing strategy used and the test-
ing capacity available, not all cases will be observed. Using
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Fig. 2. The probability of symptomatic infection. (A) Simulated vs. observed cases from the profile of the asymptomatic transmission strength (ba) using
the SEPIAR model. The red line is the median from 100 simulations using the MLE, while the red shaded region denotes the 2.5 to 97.5% quantiles across
100 simulations from all parameter combinations within two log-likelihood units of the profile MLE. Likelihoods here are with respect to case data. The
observed daily case counts are denoted by the blue line. (B) Model likelihood as a function of the proportion of cases that are symptomatic (pS) for each
parameter combination from A. The y axis shows the likelihood for that parameter combination with respect to serology data. All parameter combinations
above the blue line have likelihoods within two log-likelihood units of the MLE (defined with respect to serology). This corresponds to a range of values
for pS of approximately 13 to 18%. (C) Comparison of observed vs. simulated estimates of herd immunity in the population from parameter combinations
supported by both case and antibody data (all points above the blue line in B). The red line denotes the median value of herd immunity (the proportion
of the population that has recovered [R/N]) at that point in time in 100 simulations from the MLE parameter combination. The red shaded region denotes
the 2.5 to 97.5% quantiles for these simulations from all parameter combinations within two log-likelihood units of the MLE with respect to serology (all
parameter combinations above the blue line in B). The blue line denotes estimates of herd immunity from a recent serological survey in New York City (24).
The blue shading denotes 95% CIs for those serology estimates using the methods of ref. 24.

parameters from the fitted SEPIAR model that are supported
by case and serology data, we generate a range of IFRs that
would be expected under two different testing strategies. Since
we do not model deaths from COVID-19 hospitalized patients
in our model, we estimate the proportion of hospitalizations
that result in death using confirmed COVID-19 hospitalizations
and deaths in New York City during the study period. In the
first testing strategy, all cases are observed; in the second one,
all symptomatic cases but no asymptomatic ones are observed
(red and blue shaded histograms, respectively, in SI Appendix,

Fig. S12). Testing only symptomatic cases can result in at least
a fourfold increase in the IFR that is calculated. Limitations in
testing capacity may also impact the estimated IFR. If the test-
ing capacity is limited at the start of the outbreak, the observed
IFR measured during the epidemic (the orange vertical line in
SI Appendix, Fig. S12) will be higher than the IFR expected if
all symptomatic cases were tested. Variation in individual model
parameters within the range supported by the case and serology
data does not result in substantial variation in the IFR calculated
for each testing scenario.
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Fig. 3. Plots of (A) the reproductive number of symptomatic individuals (R0) and (B) the overall reproductive number (R0NGM
), as a function of the relative

strength of presymptomatic transmission (bp) and the relative strength of asymptomatic transmission (ba). Each point represents one parameter combination
within two log-likelihood units of the MLE (with respect to serology) from the ba profile. (C) Plot of the overall reproductive number vs. the reproductive
number in symptomatic individuals for the same points colored by ba. The black arrows show the direction of increasing strength of asymptomatic transmis-
sion (ba) and presymptomatic transmission (bp). For this same plot, except colored by the strength of presymptomatic transmission (bp), see SI Appendix, Fig.
S6. For ease of plotting, we exclude two parameter combinations which had very low relative rates of presymptomatic transmission (i.e., bp was lower than
0.020). The two outlier combinations had high reproductive numbers (R0 = 17.77, R0NGM

= 3.95 and R0 = 4.97, R0NGM
= 4.37). These outliers are included in

SI Appendix, Fig. S7.
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Fig. 4. The contribution to the force of infection at the peak of the
outbreak on April 14, 2020 from symptomatic, asymptomatic, and presymp-
tomatic infections under different relative asymptomatic transmission rates
ba. For each parameter combination from the fitted SEPIAR model sup-
ported by case and serology data (corresponding to the points in Fig. 3), we
simulate 100 trajectories and calculate the proportion of the overall force of
infection on April 14, 2020 that is due to asymptomatic, symptomatic, and
presymptomatic infections. We pool trajectories from all parameter combi-
nations that have the same value of ba, and calculate the median, 2.5%, and
97.5% quantiles for each infection class and value of ba. The colored bars
represent, for each infection class, the median proportion of its contribu-
tion to the force of infection (and hence may not sum exactly to one). The
error bars represent the corresponding 2.5% and 97.5% quantiles. Versions
of this plot calculated 4 wk before and 4 wk after the peak can be found
in SI Appendix, Fig. S9. We excluded two outlier parameter combinations
that had extremely low relative rates of presymptomatic transmission (i.e.,
where bp was less than 0.02).

Discussion
With a transmission model that incorporates daily changes in
RT-PCR testing capacity and is fit to observed case data and
serology, we estimate that the probability that an exposed indi-
vidual develops symptoms is low. Since asymptomatic infections
represent a large fraction of the infected population, they con-
tribute substantially to community transmission in the aggregate
together with presymptomatic cases, even when they individ-
ually transmit at a low per capita rate. They also contribute
substantially to building herd immunity.

We use testing information to estimate the probability that a
new case will become symptomatic without the biases present in
cruise ship (17) and traveler studies (18), or the parameter con-
founding present in citywide models. Early cruise ship and evac-
uee studies found that most COVID-19 cases were symptomatic.
However, given the small number of total infections (18, 28),
evacuee studies may overestimate the fraction of symptomatic
cases if infections in observed severe cases (29) last longer (30)
than in asymptomatic ones. Cruise ship studies may likewise
overestimate this parameter if asymptomatic cases, which were
tested later than symptomatic cases (17), recover prior to testing.
Citywide models, which avoid these biases, indicate that most
COVID-19 cases are undetected (9). They confound, however,
the fraction of symptomatic cases with the reporting or hospi-
talization rate, as they neglect daily testing changes, and cannot

distinguish between asymptomatic and undetected cases. The
alternative approach of fitting the models to death data is not
necessarily exempt from biases in parameter estimates, due to
changes in hospital capacity over time (31, 32), comorbidities
in host populations (33, 34), and the long delay between the
onset of infection and death (35). Furthermore, the underreport-
ing of cases can also bias the assumed case fatality rate (32).
Our approach resolves these issues by incorporating daily test-
ing capacity as part of the model when estimating parameters
from serology and case data. Models without explicit considera-
tion of this capacity have difficulty estimating the proportion of
cases that are symptomatic from these data (36), suggesting that
including testing is crucial.

If asymptomatic individuals transmit at a high rate, then the
overall reproductive number preintervention in New York City
is larger than the two to three range often assumed in models (6–
8) and media reports (11, 37–39) based on early estimates from
Wuhan (4, 40, 41). Furthermore, we find no supported parameter
combinations in which both the overall and symptomatic repro-
ductive numbers fall within this range. Early Wuhan models may
underestimate R0 by ignoring presymptomatic transmission and
making restrictive assumptions, including that COVID-19 has
the same incubation period and serial interval as SARS-CoV (4,
40, 41), or that most cases are symptomatic (42). Early Wuhan
case data may be insufficient to precisely estimate R0 without
making these assumptions (43–45). Thus, models and interven-
tion strategies should consider that the overall R0 may be higher
than three in certain locations (5, 46).

Fig. 5. Comparison of daily COVID hospitalizations under the model
with observed COVID hospitalizations in New York City and emergency
department respiratory syndrome surveillance reports. The red line rep-
resents the median daily case hospitalizations from 100 simulations from
the parameter combination with the highest likelihood with respect to
serology from the ba profile. The red shading represents the bounds of
the 2.5% and 97.5% quantiles across all parameter combinations from
the ba profile that are supported by case and serology data. The blue
line shows observed COVID daily hospitalizations in New York City. The
yellow line denotes daily reports of respiratory illness from syndrome
surveillance in New York City emergency departments, while the pink line
denotes anomalous respiratory surveillance reports compared to previous
years.
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If asymptomatic individuals are unlikely to transmit and
do so with low probability, then the small fraction of cases
that are symptomatic are transmitting at a high rate, in line
with recently reported “superspreading” events (47, 48). Super-
spreading events are instances in which a single infected indi-
vidual infects a large number of people. These events can be
hard to measure on a population level in the absence of detailed
transmission data. In classic superspreading dynamics, most pri-
mary cases do not result in many secondary cases, while a subset
of primary cases result in a large number of secondary cases
(8, 49, 50). This heterogeneity in the reproductive number is,
indeed, what we observe when asymptomatic individuals trans-
mit poorly. Our model is admittedly a coarse description of this
heterogeneity, since it incorporates only two different classes
of infections, symptomatic or asymptomatic. Future models can
build upon this framework with additional classes for age, socioe-
conomic status, location, or susceptibility (51), using fine-scale
case data. These models could elucidate how infections in hospi-
tals or home care settings may be contributing to the high R0 of
symptomatic cases. However, our results also indicate that, even
when the symptomatic reproductive number is large, presymp-
tomatic and asymptomatic infections contribute together to at
least 50% of the overall force of infection.

It follows that community-wide interventions that account
for nonsymptomatic cases should be crucial for mitigating out-
breaks. If asymptomatic cases transmit poorly, then concurrent
additional interventions targeting superspreading symptomatic
infections may help reduce community transmission.

Resolving the nonidentifiability of the relative strength of
asymptomatic transmission (ba) would require extensive com-
munity testing and contact tracing of asymptomatic cases. Com-
munity testing on its own can provide an estimate of the total
proportion of cases that are asymptomatic, but it may not provide
insight on whether those asymptomatic individuals can transmit
and how well they can transmit. Symptomatic and asymptomatic
individuals have similar viral loads (52), but a high viral load
does not necessarily imply high transmissibility. One limitation
of early contact tracing studies is that estimates of transmissibility
may oversample symptomatic index cases and contacts, particu-
larly during the early phase of an epidemic (15, 53). In certain
studies, only symptomatic contacts are further investigated. Ide-
ally, one would use frequent systematic community testing for
studies identifying both symptomatic and asymptomatic poten-
tial index cases for further contact tracing and testing of all
contacts regardless of symptoms. Furthermore, fixing the proba-
bility that an infection becomes symptomatic based on the results
of serology-informed models such as ours could increase the
precision with which contact tracing studies can estimate the
strength of asymptomatic transmission. Colleges that are cur-
rently reopening may be ideal test locations for this kind of
combined approach, which may also help detect superspreading
events.

While it cannot capture all testing intricacies, our frame-
work illustrates how transmission models can incorporate daily
changes in testing capacity and identify parameters that were
previously difficult to estimate, such as the probability that an
infection will become symptomatic. While we do not explicitly
denote differences between laboratories, hospitals, or diagnos-
tic tests, we account for this variation by including additional
measurement noise after simulating the RT-PCR testing process.
We also consider how sampling individuals without COVID-19
may deplete the daily testing capacity. In particular, hospital-
ized individuals with non–COVID-19–related severe respiratory
disease may have a higher priority for testing than nonsevere
COVID-19 cases. Our model uses syndrome surveillance reports
(54–57) of respiratory illness from New York City hospitals in
previous years, along with weekly influenza cases, to estimate the
number of non–COVID-19 severe respiratory cases that were

tested. The statistical model assumes that, in every year, only a
fraction of influenza cases are confirmed and that noninfluenza
respiratory cases exhibit seasonality. We use flu and syndrome
surveillance estimates from previous years to estimate the frac-
tion of influenza cases that are not confirmed and the shape
of the seasonality on non–influenza-related respiratory illness.
During the 2020 epidemic, COVID-19 mitigation measures that
reduced urban mobility may have also reduced transmission of
other respiratory diseases such as influenza. The model captures
some of this decrease, since the number of severe non-COVID
respiratory cases is a function of the number of confirmed flu
cases in the same season. The model thus captures the impact
of decreased flu cases in 2020 due to changes in mobility pat-
terns. This framework could be used in conjunction with other
epidemiological models, and extended to other municipalities
or countries with location-specific testing priorities, retesting
procedures, or diagnostic tests.

In cities where mobility information is available, the statisti-
cal model may include overall population mobility as a covariate.
In other cities that report the daily number of hospitalized indi-
viduals with COVID-19 symptoms who were tested each day,
one could subtract from this number the total COVID-19 hos-
pitalizations estimated by the epidemiological model, to obtain
the number of non–COVID-19–positive hospitalized cases that
were tested. Depending on the information available for each
location, future iterations of this framework could explicitly
incorporate different diagnostic tests and their respective sen-
sitivities and specificities. It could also be used to examine how
altering testing strategies such as switching from symptom-based
testing to community testing may improve transmission param-
eter inference and efficacy of control efforts. This may be an
important consideration for countries that have limited testing
capacity but are still in the midst of the first pandemic wave,
such as India.

Given the potential role of population density and socioeco-
nomic status on contact rates and access to care, there may be
considerable heterogeneity in infection rates and seropositivity
in different neighborhoods of New York City. While overdis-
persion in measurement error can implicitly account for this
variation in our implementation, future formulations could do
so explicitly with a spatial model of transmission between neigh-
borhoods and within specific settings such as hospitals and home
care networks. This level of resolution would require, how-
ever, observed cases, testing capacity, and hospitalizations within
each unit. Incorporating human movement estimates into the
model could enable analysis of how the infectious period of
the virus may impact the clustering of cases within particular
neighborhoods.

Future studies can investigate the impact of including a test-
ing submodel on parameter estimation and the level of detail
required in such a submodel. For example, one could compare
the results of parameter estimation from fitting a given epidemi-
ological model with a queue-based testing model to those that
assume a fixed reporting rate and a delay in the reporting of
cases. We expect the former to exhibit more uncertainty when
informed by surveillance data from the beginning of the pan-
demic, when little testing capacity is available, but to reduce
this uncertainty as the time series is extended and this capacity
changes. Models that assume a fixed reporting rate may under-
estimate the range in uncertainty of epidemiological parameters
that are heavily informed by the early part of the time series,
and may even underestimate the values of the parameters them-
selves. Models with a queue-based testing submodel may obtain
more-precise estimates of parameters that impact the end of
the outbreak, such as those related to the depletion of suscep-
tible individuals, acquisition of immunity, or, in our model, the
impact of social distancing and stay-at-home orders on overall
transmission. Even if including some form of testing model that
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takes into account changes in capacity is key to obtaining more
precise parameter estimates, simpler versions of our implemen-
tation may be sufficient. For example, the more generalizable
components, such as the testing of hospitalized individuals, may
be more important than taking into account their resampling
as they leave the hospital. Simplifying the testing model based
on model selection analyses can facilitate wider adaption of the
testing framework to other cities, countries, or time periods.

Future versions of the model could also capture heterogene-
ity in the severity of infection and the acquisition of immunity.
When fitting the model, we treat seropositivity as a reasonable
correlate of herd immunity. The assay used to measure sero-
prevalence in New York City (24) elicits neutralizing antibodies
(58) and can detect seroconversion in severe, mild, and asymp-
tomatic cases (58). We assume that this herd immunity does not
decay over the course of the study, given the short duration of
time from March to June 2020 and the observation that antibody
responses can persist for at least 5 mo following the start of the
pandemic in New York City (59). The immune response to the
SARS-CoV virus consists of several components including anti-
body (60) and T-cell mediated (61) responses, and heterogeneity
in particular pathways of the immune response can influence the
severity of infections (62, 63). The severity of infection may, in
turn, impact the type, strength, and duration of the immunity
acquired (64, 65). As future experimental studies determine how
each immune response can mitigate infection, viral shedding, and
transmission, relevant aspects of the dynamics of host immunity
can be incorporated into the model and corroborated with data.
Understanding how host heterogeneity in immune responses
may impact the infection severity and herd immunity may be
valuable when considering long-term vaccination policies.

While a model with explicit within-host dynamics would be
challenging to fit using case data, relevant aspects could be incor-
porated in several ways. For example, the model could include
additional classes of infection corresponding to levels of sever-
ity. Alternatively, a distribution of susceptibility or immunity
could be used to capture heterogeneity in the immune response
between individuals. Finally, the model could incorporate func-
tional forms for the acquisition and waning of immunity that
are fixed based on experimental observations of serology and
T-cell dynamics. Fitting these models to times series from mul-
tiple locations will improve inference, but the testing capacity
and strategy in each location should be taken into account when
doing so.

Our finding that many individuals were already infected by
March 1 is consistent with earlier estimates that community
transmission began in February in New York City (27, 55, 66).
Previous studies could not explain, however, why no substan-
tial increase in COVID-19–like illness was observed prior to
February 28 in syndrome surveillance data (55). Our simulations
show that the lag between infection onset and hospitalization
can explain this discrepancy. Even when initialized with many
infected cases on March 1, simulated hospitalizations do not rise
until several weeks later, concurrent with observed COVID-19
hospitalizations (Fig. 5). Most likely, the estimated initial condi-
tions suggest multiple parallel foci of initiation of the epidemic
with multiple importations of infections. Another suggested pos-
sibility is a dosage dependence effect, wherein the severity of
an individual’s infection depends on the size of the virus pop-
ulation that the person becomes infected with during one or
more transmission events, and hence on the overall viral load
of COVID-19 in the community. In this scenario, early COVID-
19 cases in February and early March would be less severe. This
would be consistent with the syndrome surveillance data, where
we see a rise, in early March, of respiratory infection reports in
the emergency departments of hospitals, but do not yet see a
rise in COVID-19 hospitalizations. This phenomenon might also
explain why our model slightly underestimates the peak in daily

hospitalizations, even though it correctly identifies the time and
shape of that peak.

We show that testing capacity and strategy can substantially
affect estimates of the IFR, a quantity that is frequently used by
public health officials in assessing the severity of an outbreak.
Our model ignores several factors, such as nonhospital deaths
from COVID-19, which may increase the true IFR, and rising
trends in hospital capacity and improved treatments, which may
decrease it. Nevertheless, our results underscore the importance
of considering testing strategy and capacity when interpreting
literature estimates of the IFR.

In conclusion, explicit consideration of changes in testing
capacity allows us to infer with certainty, from case and serology
data, that most new COVID-19 cases do not become symp-
tomatic. We also inferred that the overall or symptomatic repro-
ductive number may be larger than often assumed, depending on
how well asymptomatic cases can transmit. Despite this uncer-
tainty, the strong consistent contribution to community trans-
mission from cases without symptoms observed across scenarios
supported by the data should be considered when formulating
public health intervention strategies. Making available detailed
information on testing policy and data on testing capacity over
time will strengthen the ability of epidemiological models to
learn from the past and inform us about the future.

Materials and Methods
We examine three different model structures that have been used to char-
acterize COVID-19 dynamics in previous studies (Fig. 1). All models are
modified versions of the traditional SEIR model (67). The first model, the
SEPIR model (17, 68), is the most standard extension in which transitions are
between a linear chain of compartments. Its formulation adds a compart-
ment P for presymptomatic transmission. The second one, the SEIAR model
(7, 9), differs conceptually in that it includes asymptomatic individuals rather
than presymptomatic ones, and defines them as distinct, in the sense that
they will never transition to exhibiting symptoms. This definition implicitly
recognizes that there are essentially two classes of individuals in terms of
susceptibility to disease and symptoms. The third structure for the SEPIAR
model (6, 26) is a combination of the first two and includes them as nested,
particular, cases.

All three models include a chain of m exposed classes to incorporate the
total time between the onset of infection and the onset of symptoms as
gamma distributed (with mean 5.5 d and standard deviation 2.25 d) (69).
Symptomatic individuals are subdivided into two sequential classes, IS1 and
IS2

, for practical purposes, to follow their numbers before and after some
of them transition to hospitalization. Individuals spend an average of 1/φS

days in IS1 and 1/γ days in IS2
.

The parameter R0 represents the reproductive number experienced by
symptomatic individuals. We define a baseline preintervention transmis-
sion rate in symptomatic individuals, β0, by dividing R0 by the average
total time that nonsevere cases transmit with symptoms. We also define a
postintervention transmission rate β1, which is equal to the preintervention
transmission rate β0 multiplied by a scaling factor bq. Low values of bq rep-
resent a substantial reduction in the transmission rate due to interventions.
Social distancing guidelines were issued by New York City starting on March
17 (70, 71), and a stay-at-home order was issued which took effect on the
evening of March 22 (72). Thus, prior to the imposition of social distancing,
the transmission rate of symptomatic individuals in our models, β(t), is equal
to β0. From March 18 through March 22, β(t) decreases linearly from β0 to
β1. From March 23 onward, β(t) is equal to β1.

In all models, a fraction pS of exposed individuals Em become symp-
tomatic. After an average of 5 d of transmission, symptomatic cases are
hospitalized with probability pH. Symptomatic cases that are not severe
enough to require hospitalization recover at rate γ. Hospitalized individ-
uals recover at rate hv = 1/13 (30) and do not transmit while hospitalized.
In practice, some individuals with severe COVID-19 symptoms that required
hospitalization may not have been hospitalized, due to barriers to care.
However, their contribution to community transmission is unlikely to have
been substantial. These individuals would remain isolated at home dur-
ing the period of severe infection and avoid nonhousehold contacts, while
household contacts would have been exposed for a substantial time prior to
the onset of severity. We assume a fixed population size for New York City
of 8 million individuals (73).
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Assumptions about which infected classes are infectious and how they
contribute to the transmission rate allow us to reduce the SEPIAR model to
the SEPIR or SEIAR models. Presymptomatic individuals transmit for an aver-
age of about a day [0.92 d (25)] at a transmission rate equal to the baseline
transmission rate β(t) multiplied by a scaling factor b = bp. Asymptomatic
infections transmit for an average of 5 d, equal to the average duration
between the onset of symptoms and hospitalization in severe cases, at
a transmission rate equal to the baseline rate β(t) multiplied by scaling
factor ba.

The models are implemented numerically via an Euler approximation of
the deterministic equations to which demographic stochasticity is added.
Specifically, the number of individuals making state transitions from com-
partments with more than one exit is drawn from an Euler-multinomial
distribution (74). The number of individuals making state transitions from
compartments with only one exit is drawn from a binomial distribution.

Description of Testing Model. The model takes into account daily changes in
the testing capacity, using estimates of daily tests conducted in New York
City from the New York State Department of Health (23), as well as the
retesting of severe and nonsevere symptomatic cases prior to leaving the
hospital or quarantine. We assume that there are two categories of cases—
severe (hospitalized) cases and nonsevere cases subject to different testing
priorities (75): the initial testing of new hospitalized COVID-19 cases (high-
est priority), the retesting of those individuals when they leave the hospital,
the testing of new nonsevere symptomatic COVID-19 cases, and, finally, the
retesting of those symptomatic cases (lowest priority). All severe COVID-19
cases after March 1 are sampled when they enter the hospital and eventu-
ally tested once enough capacity is available. We assume that symptomatic
nonsevere cases are sampled at the same time, in the course of their infec-
tion, as severe cases. However, we assume that they are not tested if they
recover before enough testing capacity is available. During the early stages
of the epidemic, the CDC recommended test-based strategies to determine
when to conclude home isolation or hospitalization (76). Accordingly, we
assume that hospitalized cases are retested twice (over a 24-h period) after
the average length of time in the hospital (13 d), while nonsevere cases are
likewise retested twice after the end of a 14-d quarantine period.

We also take into account the potential for non–COVID-19 severe respi-
ratory cases to be sampled in hospitals and tested (with the same priority
as hospitalized COVID-19 cases). We use confirmed influenza cases (77)
and syndrome surveillance reports of respiratory disease from emergency
departments in New York City hospitals in previous years (78) to estimate
the number of non–COVID-19 severe respiratory cases that may have been
sampled (SI Appendix). We assume that the RT-PCR testing has a sensitivity
of 90% (79), that testing takes 48 h (80), and that there is an additional
negative-binomial distributed dispersion after the RT-PCR testing with stan-
dard deviation σM. This dispersion takes into account variation in sampling
and testing protocols across laboratories and hospitals, as well as variation
in the sensitivity and time required for different PCR assays.

Overview of the Model Fitting and Inference Strategy. Unless otherwise
mentioned, we fit the following parameters: the recovery rate for non-
severe symptomatic infections (γ); the scaling factors for asymptomatic,
presymptomatic, and postintervention transmission (ba, bp, and bq); the
symptomatic probability (pS) and the hospitalization probability (pH); the
reproductive number for symptomatic cases (R0); the dispersion parameter
for RT-PCR testing (σM); and the initial number of infected (I0) and exposed
(E0) individuals at the start of the simulation on March 1, 2020. We use
the iterated filtering algorithm MIF (81) within the R-package POMP (for
partially observed Markov process models) to fit parameter combinations
by likelihood maximization. The iterated filtering algorithm is specifically
designed for fitting stochastic and nonlinear models with hidden variables
in the presence of both process and measurement error. We apply the
sequential Monte Carlo algorithm pfilter (82) to evaluate the likelihood of
the final parameter combinations obtained with the computational search.
Likelihoods are estimated by simulating state variables at each observa-
tion time from an underlying Markov process model, and then calculating
the likelihood of each observation given the simulated value of the state
variable and a measurement model. For the analysis of the full SEPIAR
model, we generate a Monte Carlo profile (83) for the relative strength of
asymptomatic transmission (ba).

For all resulting parameter combinations within two log-likelihood units
of the maximum-likelihood estimates (MLE), we then calculate the likeli-
hood with respect to serology, using seroprevalence data previously pub-
lished by ref. 24 from a screening group representative of the general
population, using plasma samples from patients at Mount Sinai Hospital in

New York City. In the Mount Sinai study, random, deidentified, and cross-
sectional samples were obtained over the course of the outbreak from
patients at obstetrics and gynecology visits and deliveries and oncology-
related visits, as well as hospitalizations due elected or planned surgeries,
transplant surgeries, preoperative medical assessments, and related outpa-
tient visits, cardiology office visits, or other regular office or treatment visits
whose purpose was unrelated to COVID-19 (24). The assay used to mea-
sure seroprevalence (24) elicits neutralizing antibodies (58) and can detect
seroconversion in severe, mild, and asymptomatic cases (58). We treat the
seroprevalence measurement at each time point as a measure of short-term
herd immunity in the population, specifically, of the proportion of the popu-
lation that has already recovered from COVID-19 infection. We assume that
this herd immunity does not decay over the course of the study, since anti-
bodies have been shown to persist for at least 5 mo (59). We compare the
seroprevalence at each time point from the serology data to the recovered
fraction of the population R/N from simulated trajectories of the epidemi-
ological model. When calculating the likelihood of each trajectory at each
observation time with respect to the seroprevalence data, we assume that
the number of people who seroconverted in the Mount Sinai study is drawn
from a binomial distribution with p equal to the value of R/N in the sim-
ulated trajectory at that time, and N equal to the total number of people
sampled. We sum the log-likelihoods across all observation time points and
then average over all trajectories using the logmeanexp function in the
R package POMP (82) to obtain a log-likelihood for each parameter com-
bination with respect to the serology data. We isolate all combinations
supported by the serology data that have log-likelihoods within two units
of the MLE.

For each combination, we examine the proportion of cases that are
symptomatic, pS, the reproductive number in symptomatic individuals, R0,
and the overall reproductive number for the model, R0NGM

. We derive the
following expression for R0NGM

using the next-generation matrix (84):

R0NGM
=
β ∗ bp

φU
+
β ∗ ba(1− pS)

φS
+
βpS

φS
+
β(1− pH)pS

γ
. [1]

Calculation of the IFR. The IFR is frequently defined as the ratio of deaths to
cases. Let IFRall represent the IFR with respect to all cases,

IFRall =
Confirmed deaths

All cases
. [2]

This is equivalent to the proportion of all cases that result in death. We can
estimate this quantity using the parameters from the fitted SEPIAR model.
Recall that pS is the probability that a case is symptomatic, and pH is the
probability that a symptomatic case becomes hospitalized. These quantities
are equivalent to the proportion of all cases that are symptomatic, and the
proportion of symptomatic cases that are hospitalized. Let pF represent the
proportion of all hospitalizations that are fatal. Since this parameter is not
fitted in the SEPIAR model, we estimate it from observed data by divid-
ing the total number of confirmed COVID-19 deaths by the total number
of confirmed COVID-19 hospitalizations in New York City during the study
period. We use data updated on June 15, 2020 from the New York City
Health Department COVID-19 Data Portal (22), and obtain an estimate of
pF = 0.33. We can then write an expression for IFRall using the parameters
estimated with the fitted SEPIAR model,

IFRall = pSpHpF, [3]

and obtain this quantity for each parameter combination supported by case
and serology data (red histogram in SI Appendix, Fig. S12).

Let IFRsymp represent the IFR that would be estimated if all symptomatic
cases were observed but no asymptomatic ones were observed. This is
equivalent to the proportion of all symptomatic cases that result in death,

IFRsymp =
Confirmed deaths

All symptomatic cases
= pHpF [4]

(shown in the blue histogram of SI Appendix, Fig. S12).
We compare these two quantities with the observed IFR, calculated by

dividing the total deaths by the total number of PCR-confirmed COVID cases
in New York City during the study period (the orange line in SI Appendix,
Fig. S12).

Additional Details. Further details of the SEPIAR equations, testing model,
Monte Carlo profile of the SEPIAR model, initial grid searches, and model
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comparison of the SEPIR and SEIAR models, and derivation of the overall
reproductive number R0NGM

, are provided in SI Appendix.

Data Availability. Code used to simulate and fit the epidemiological model
has been deposited in Github at https://github.com/pascualgroup/COVID
NYC Epi Model (85).
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