
Commission de l'agriculture, des pêcheries, de l'énergie et des ressources naturelles

Déposé le : 26 oct. 2011

CAPERN-108

Secrétaire :

Rapport sur les activités minières au Québec 2010

Avertissement

Les données utilisées pour rédiger ce rapport proviennent de sources diverses y compris des sondages auprès des prospecteurs, des fonds miniers autochtones, et des représentants de compagnies d'exploration et d'exploitation minière ainsi que des communiqués de presse publiés par ces dernières.

L'exactitude et la fiabilité de ces données dépendent exclusivement de ces sources. Les auteurs se dégagent de toute responsabilité de la diffusion d'erreurs provenant de celles-ci.

DOCUMENT PUBLIÉ PAR LA DIRECTION GÉNÉRALE DE GÉOLOGIE QUÉBEC

Direction générale

Robert Marquis, géo.

Bureau de l'exploration géologique du Québec

Sylvain Lacroix, géo.

Direction de l'information géologique du Québec

Luc Charbonneau, par intérim

En collaboration avec le secteur des opérations régionales et le secteur des mines

Sous-ministre associé aux opérations régionales Pierre Grenier

Sous-ministre associé aux mines Jean-Sylvain Lebel

Coordination

Patrice Roy, géo. et James Moorhead, géo.

Révision


Michèle Mainville

Graphisme

André Tremblay

Page couverture

Design graphique: André Tremblay

Photos

- 1- Site de la mine du Lac Bloom. *Photo courtoisie de Consolidated Thompson Iron Mines Limited.*
- **2** Photo de terrain été 2010, Nord-du-Québec. *Photo MRNF.*
- **3-** Photo de terrain été 2010, Nord-du-Québec. *Photo MRNF.*
- **4-** Fosse en construction du projet Canadian Malartic de Osisko. *Photo MRNF*.

Dépôt légal – Bibliothèque et Archives nationales du Québec

ISBN: 978-2-550-61324-4 © Gouvernement du Québec, 2011

Table des matières

Chapitre 1 - Bilan et faits saillants	7
1.1 - Dossiers stratégiques et politiques	-
Plan d'action de la Stratégie minérale (Élise Matte)	
Plan Nord (Élise Matte)	
Modifications législatives et budgétaires (Dorra Djemal)	
1.2 - Contexte-économique (Martin-Labrecque)	
1.3 - Exploration minière (James Moorhead, Patrick Houle, Pierre Doucet, Martin Labrecque)	
· ·	
Fer	
Cuivre et zinc	
Nickel, cuivre, cobalt et éléments du groupe du platine (ÉGP)	
Or	
Uranium	
Lithium	
Éléments des terres rares	
Minéraux industriels	10
1.4 - Mise en valeur et développement minier (Katrie Bergeron, Martin Bernatchez, Denis Blackburn,	
Martin Dumas, Germain Girard, Denis Raymond)	
Fer	
Cuivre et zinc	
Nickel, cuivre, cobalt et éléments du groupe du platine (ÉGP)	
Or	
Uranium	
Lithium	
Diamant	
1.5 - Exploitation minière (Martin Labrecque, Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Martin Dumas	,
Germain Girard, Denis Raymond)	
Fer	
Or	
Minéraux industriels	
Tourbe	13
Chapitre 2 - Régime minier et accès au territoire	15
Dorra Djemal, Roch Gaudreau, Jocelyne Lamothe	
2.1 - Principes de bases	15
2.2 - Titres miniers	
Titres d'exploration	15
Titres d'exploitation	15
2.3 - Titres miniers actifs	16
2.4 - Le système de gestion des titres miniers « GESTIM Plus »	16
Nouveautés en 2010	16
2.5 - L'exploration minière en territoire urbanisé	
2.6 - Relations avec les communautés autochtones	

2.7 - Protection du territoire	
2.8 - Contraintes à l'exploration minière	
2.9 - Délégation de la gestion du sable et gravier aux MRC	
2.10 - Projet de loi 79 modifiant la Loi sur les mines	
Stimuler les travaux d'exploration sur le claim	18
Concilier les usages du territoire	
Enrichir le patrimoine de connaissances géologiques du Québec	19
2.11 - La fiscalité minière	19
2.12 - Projet de loi modifiant la Loi concernant les droits sur les mines	
Chapitre 3 - Travaux géoscientifiques	27
Sylvain Lacroix, Patrice Roy, Charles Maurice, Jean-Yves Labbé	
3.1 - Inventaires géologiques	
3.2 - Inventaires sur le Quaternaire	
3.3 - Inventaires géochimiques	
3.4 - Inventaires géophysiques	
3.5 - Publications	
3.6 - Cibles d'exploration	28
Chapitre 4 - Exploration minière	33
4.1 - Introduction (Martin Labrecque et James Moorhead)	
Substances recherchées.	
Dépenses pour des activités d'exploration et de mise en valeur	
Emplois dans le domaine de l'exploration minière	
4.2 - Nord-du-Québec (région 10) (Patrick Houle, James Moorhead, Suzanne Côté)	
Province du Supérieur.	
Province de Churchill	
Perspectives d'exploration	
4.3 - Abitibi-Témiscamingue (région 08) (Pierre Doucet, James Moorhead, Denis Lesage, Suzanne Côté)	
4.4 - Les régions du Québec à l'exception de l'Abitibi-Témiscamingue (Région 08)	
et du Nord-du-Québec (région 10) (Suzie Nantel, Steve Ouellet, Louis Madore, Pierre Doucet et Denis Lesa	ige)3 6
Régions administratives des provinces de Grenville et du Supérieur : Outaouais (07), Laurentides (15),	
Lanaudière (14), Mauricie (04), Capitale-Nationale (03), Saguenay-Lac-Saint-Jean (02) et Côte-Nord (09)	36
Régions administratives de la Province des Appalaches : Estrie (05), Centre-du-Québec (07),	
Chaudière-Appalaches (12), Bas-Saint-Laurent (01) et Gaspésie-Îles-de-la-Madeleine (11)	37
Chapitre 5 - Mise en valeur et développement minier	75
Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Martin Dumas, Germain Girard, Denis Ra	
5.1 - Mise en valeur	75
Fer	
Nickel, cuivre, cobalt et éléments du groupe du platine (ÉGP)	75
Or	75
Uranium	
Lithium	
Towns naves	76

Minéraux industriels	76
Diamant	76
5.2 - Développement minier	
Fer	76
Cuivre et zinc	76
Nickel, cuivre, cobalt et éléments du groupe du platine (ÉGP)	76
Or	76
Chapitre 6 - Exploitation minière	83
6.1 - Données économiques et statistiques sur l'exploitation minière (Martin Labrecque)	
Substances produites au Québec	83
Sociétés exploitant les mines de minerai métallique au Québec	83
Investissements miniers	83
6.2 - Exploitation minière (Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Pierre Buteau, Martin Dumas, Germain Girard, Denis Raymond, N'Golo Togola)	ន្តខ
Substances métalliques	
Substances non métalliques	
Pierres industrielles	
Pierres architecturales	
Tourbe	
6.3 - Emplois dans le secteur de l'extraction minière (Martin Labrecque)	
6.4 - Activités de première transformation (Martin Labrecque)	
Chapitre 7 - Restauration minière Philippe-André Lafrance	105
Annexe 1 - Subdivisions géologiques, limites des régions administratives et bureaux de services à la clientèle des mines au Québec	c107
Annexe 2 - Légende des abréviations utilisées dans les tableaux	111
Annexe 3 - Le processus de développement minéral	115
Annexe 4 - Références	121
Liste des figures	
Figure 1.1 - Dépenses en travaux d'exploration et de mise en valeur au Québec de 2000 à 2010	8
Figure 1.2 - Valeur des expéditions de produits miniers du Québec de 2000 à 2009	12
Figure 1.3 - Emplois directs dans le secteur minier au Québec	12
Figure 2.1 - Titres miniers d'exploration et d'exploitation au Québec	21
Figure 2.2 - Contraintes à l'exploration minière au Québec	
Figure 2.3 - Répartition des droits et des revenus de la gestion du sable et gravier par régions	
administratives pour 2009-2010	
	22
Figure 3.1 - Inventaires géologiques et sur le Quaternaire	22
Figure 3.1 - Inventaires géologiques et sur le Quaternaire	22 23
Figure 3.2 - Inventaires géochimiques et géophysiques	

Figure 4.4 - Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue en 2010
secteur de Rouyn-Noranda-Cadillac en 2010
·
Figure 4.6 - Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue,
secteur de Malartic-Val-d'Or en 2010
Figure 4.7 - Projets d'exploration dans les régions du Québec à l'exception de l'Abtibi-Témiscamingue
et du Nord-du-Québec en 201044
Figure 5.1 - Localisation des projets miniers de mise en valeur et de développement au Québec en 2010
Figure 6.1 - Mines actives au Québec en 2010
Figure 6.2 - Carrières de pierres industrielles et de tourbe exploitées au Québec en 2010
Figure 6.3 - Carrières de pierre architecturale exploitées au Québec en 2010
Lista das tableaux
Liste des tableaux
Tableau 1.1 - Prix moyens de certains métaux en \$ US
Tableau 2.1 - Répartition des titres d'exploration minière au Québec par région administrative
Tableau 2.2 - Répartition des titres d'exploitation minière au Québec par région administrative
Tableau 2.3 - Répartition des droits et des revenus de la gestion du sable et gravier par région administrative en 2009-2010
Tableau 3.1 - Répartition par région administrative des dépenses en travaux d'acquisition de connaissances géoscientifiques
effectués par le Ministère des Ressources naturelles et de la Faune du Québec
Tableau 4.1 - Répartition des dépenses en travaux d'exploration et de mise en valeur par substances recherchées au Québec en M\$ 45
Tableau 4.2 - Répartition des dépenses en travaux d'exploration et de mise en valeur par région administrative du Québec
Tableau 4.3 - Projets d'exploration dans la région administrative du Nord-du-Québec en 2010
Tableau 4.4 - Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue en 2010
Tableau 4.5 - Projets d'exploration au Québec, à l'exception de l'Abitibi-Témiscamingue et du Nord-du-Québec
Tableau 5.1 - Projets miniers au stade de mise en valeur au Québec en 2010
Tableau 5.2 - Projets miniers au stade de développement au Québec en 2010
Tableau 6.1 - Valeur des expéditions de produits miniers par région administrative du Québec en 2008 et 2009p
Tableau 6.2 - Expéditions de produits miniers par substance du Québec en 2008 et 2009p
Tableau 6.3 - Sociétés exploitants les mines de minerai métallique du Québec
Tableau 6.4 - Investissements miniers par région administrative du Québec
(exploration et mise en valeur et aménagement de complexes miniers, en M\$)
Tableau 6.5 - Production des substances métalliques au Québec en 2010 92
Tableau 6.6 - Production des substances non métalliques au Québec en 2010
Tableau 6.7 - Carrières de pierres industrielles exploitées au Québec en 2010
Tableau 6.8 - Carrières de pierre architecturale au Québec en 2010
Tableau 6.9 - Tourbières exploitées au Québec en 2010 102
Tableau 6.10 - Répartition des travailleurs directs du secteur minier par région administrative du Québec en 2009p
Tableau 7.1- Sites du passif environnemental en restauration au Québec en 2010

CHAPITRE 1 - BILAN ET FAITS SAILLANTS

1.1 - Dossiers stratégiques et politiques

PLAN D'ACTION DE LA STRATÉGIE MINÉRALE

Élise Matte

Le 29 juin 2009, le ministre délégué aux Ressources naturelles et à la Faune lançait la toute première stratégie minérale du Québec. Cette stratégie s'articule autour des trois orientations suivantes :

- Créer de la richesse pour le Québec et préparer l'avenir du secteur minéral québécois;
- Assurer un développement minéral respectueux de l'environnement;
- Favoriser un développement associé aux communautés et intégré dans le milieu.

Avec cette stratégie, le gouvernement entend faire du secteur minier une des figures de proue du développement durable.

Plusieurs efforts ont été faits en 2010. Les mesures contenues dans la stratégie font l'objet d'un plan d'action détaillé et sont mises en œuvre. Pensons notamment aux nombreux travaux reliés à l'acquisition de connaissances géoscientifiques, au dépôt du projet de loi 79 ou aux efforts faits pour optimiser l'offre en éducation et en formation.

La stratégie minérale, construite autour des trois piliers du développement durable, tient compte, notamment, des principes d'efficacité économique, de participation et d'engagement, et de protection de l'environnement.

PLAN NORD

Élise Matte

En 2010, dans la foulée de la démarche d'élaboration du Plan Nord, plusieurs groupes de travail ont été formés afin d'alimenter la réflexion sur les différents domaines d'activité économique présents dans le Nord québécois.

Un groupe de travail sur les mines a été constitué pour collaborer à cette démarche de planification gouvernementale. Ce groupe est composé de personnes reconnues pour leur expertise dans les différentes sphères du monde minier. Ces personnes proviennent du secteur des affaires, des régions, de plusieurs communautés autochtones, de plusieurs Conférences régionales des élus (CRÉ) et de groupes environnementaux.

Le fruit de ces réflexions a été remis aux membres de la Table des partenaires, présidée par la ministre des Ressources

naturelles et de la Faune, Mme Nathalie Normandeau, pour alimenter le document de lancement du Plan Nord.

MODIFICATIONS LÉGISLATIVES ET BUDGÉTAIRES

Dorra Djemal

Le projet de loi 79 modifiant la Loi sur les mines a franchidifférentes-étapes-durant-l'année-2010. Des-présentations-demémoires et de commentaires, provenant d'individus et de divers groupes intéressés par les modifications que le gouvernement souhaite apporter au régime minier québécois, ont eu lieu. Le projet de loi a fait l'objet d'audiences publiques élargies. Actuellement, il est étudié article par article au sein de la Commission de l'agriculture, des pêcheries, de l'énergie et des ressources naturelles de l'Assemblée nationale du Québec.

Dans le cadre de son budget 2010-2011, le gouvernement du Québec a annoncé une importante révision du régime de droits miniers. Ce régime révisé est adapté aux nouvelles réalités du secteur minier et a comme principal objectif de percevoir une juste part des bénéfices de l'exploitation des ressources minérales, sans toutefois compromettre la compétitivité des entreprises.

Veuillez consulter la section « Régime minier du Québec » afin d'obtenir plus de détails concernant ces modifications.

1.2 - Contexte économique

Martin Labrecque

Tout comme l'économie en général, le secteur minier connaît des périodes de croissance et des périodes de ralentissement. Au début des années 2000, le secteur minier traversait une période de ralentissement alors que la situation s'est inversée à partir de 2003.

La dernière période de croissance a cependant été affectée par la crise financière de 2008 qui s'est d'abord traduite par une diminution significative de la capitalisation boursière de la plupart des sociétés minières à travers le monde.

À son tour, le ralentissement économique qui s'en est suivi a eu pour effet de faire diminuer les expéditions des sociétés minières. Selon la firme PricewaterhouseCoopers (PwC)¹, les revenus des 40 plus grandes sociétés minières mondiales auraient diminué de 15 % en 2009 par rapport à l'année précédente.

Les problèmes de financement combinés à la diminution des revenus ont entraîné, à l'échelle mondiale, la fermeture de plusieurs mines, l'arrêt de projets de développement et la

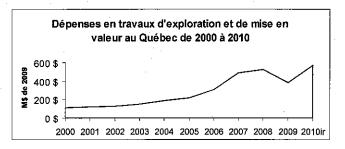
1- PricewaterhouseCoopers, Mine - Back to the boom, 44 p., mai 2010.

diminution générale des dépenses pour des activités d'exploration minière pendant l'année 2009.

Malgré tout, le secteur minier s'est relevé plus rapidement que la plupart des autres secteurs d'activité, particulièrement au Québec. À la fin de l'année 2009, la plupart des grandes sociétés minières mondiales avaient retrouvé, voire dépassé, leur niveau de capitalisation boursière de 2007 et le niveau de leurs expéditions était revenu à la hausse.

Les prix de la plupart des substances, qui avaient diminué avec la crise économique, ont augmenté de façon générale tout au long de 2009 et de 2010 pour revenir à des niveaux similaires à ceux connus avant 2008 (tableau 1.1). Ainsi, la tenue exceptionnelle du prix de l'or, le raffermissement des prix des métaux usuels (Cu, Ni et Zn) et du minerai de fer ainsi que la recherche de substances plus exotiques (U, Li, terres rares) ont permis à l'industrie minière québécoise et mondiale de reprendre le sentier de la croissance en 2010.

En dépit de certaines incertitudes qui demeurent sur la solidité de la reprise économique, la croissance de la demande à long terme provenant notamment du Brésil, de la Russie, de l'Inde et plus particulièrement de la Chine font en sorte que le secteur minier devrait poursuivre sa croissance.


1.3 - Exploration minière

James Moorhead, Patrick Houle, Pierre Doucet, Martin Labrecque

Depuis les six dernières années, l'investissement pour des activités d'exploration minière a été favorable au Québec. Au 31 décembre 2010, il y avait 228 564 titres d'exploration actifs sur le territoire québécois totalisant une superficie de 10,3 millions d'hectares, soit 6,2 % de la superficie totale du Québec

Selon les données de l'Institut de la statistique du Québec, les dépenses d'exploration et de mise en valeur au Québec ont dépassé 200 M\$ au cours de chacune des six dernières années (figure 1.1). En 2009, selon les données préliminaires, les travaux et les dépenses en exploration et en mise en valeur ont considérablement diminué (379 M\$) par rapport à l'année précédente, qui était une année ayant atteint des sommets en termes de dépenses pour des travaux d'exploration (526 M\$). Ainsi, malgré cette diminution causée par la crise économique mondiale, l'année 2009 fut une bonne année en termes de dépenses pour des travaux d'exploration et fut supérieure à la moyenne observée depuis le début des années 2000. Pour 2010, les intentions révisées des sociétés pour l'exploration et la mise en valeur sont de nouveau en hausse et pourraient atteindre 576 M\$.

FIGURE 1.1

Source : Institut de la statistique du Québec. Les données pour 2010 sont les intentions révisées des sociétés minières.

FER

À 30 km au sud de Radisson, Ressources minières Augyva et son partenaire Canadian Century Iron Ore Corporation ont publié des estimations de ressources mesurées de 5,7 Mt à 23,29 % Fe, des ressources indiquées de 25,6 Mt à 23,48 % Fe et des ressources présumées de 821,1 Mt à 24,56 % Fe sur les dépôts 1 à 6 du projet Lac Duncan.

Près de Matagami, sur la propriété Iron-T d'**Apella Resources**, des ressources présumées de 11,63 Mt à 0,4 % V_2O_5 , 37,88 % Fe_2O_3 et 6,33 % TiO_2 ont été calculées et trois zones minéralisées ont été découvertes (T1, T2 et T3).

Sur la Côte-Nord, **Corporation Ressources Nevado** a identifié plusieurs nouveaux indices de fer-titane-vanadium sur son projet La Blache. Un échantillon provenant d'une rainure effectuée sur l'indice Hervieux Est Extension a retourné des valeurs de 62,8 % Fe₂O₃ et 19,6 % TiO₂ sur une section de 12,0 m.

Champion Minerals a complété un calcul des ressources pour le gîte Fire Lake North du projet Fermont Iron. Le gîte contient des ressources présumées de 388 Mt à 29 % Fe total. Des tests métallurgiques ont été réalisés et la société prépare trois sites afin de prélever un échantillon en vrac.

Au sud de Chibougamau, **Blackrock Metals** a entrepris une étude de faisabilité ainsi qu'une étude d'impact environnemental et du milieu social sur le projet Blackrock pour les substances fer-vanadium-titane.

CUIVRE ET ZINC

Dans la région de Chibougamau, sur la propriété Lac Scott, **Ressources Cogitore** a découvert une lentille de sulfures massifs, désignée comme la lentille CFO; le forage SL-93-106W a recoupé 26,7 m à 2,1 % Cu, 5,2 % Zn, 0,3 g/t Au et 24,9 g/t Ag. De plus, les récents sondages ont permis un nouveau calcul de ressources présumées de 3,6 Mt à 1,1 % Cu, 5,2 % Zn, 0,3 g/t Au et 36 g/t Ag sur les lentilles Ouest, Stringers et 800.

Au Nunavik, Mines Aurizon et Exploration Azimut ont rapporté la découverte d'une zone minéralisée en cuivre-orargent-tungstène sur la propriété Rex Sud.

À 80 km au nord-est de Schefferville, Western Troy Capital Resources a annoncé plusieurs valeurs en cuivre allant jusqu'à 5,74 % Cu en échantillons choisis sur le projet Lac Deborah.

NICKEL, CUIVRE, COBALT ET ÉLÉMENTS DU GROUPE DU PLATINE (ÉGP)

À 80 km au sud-est de la mine Raglan, Goldbrook Ventures et Jilin Jien Nickel Industry ont découvert un nouveau système minéralisé dans le Complexe ultramafique Echo (sondage ECH10-004: 1,41 % Ni, 1,03 % Cu, 8,33 g/t ÉGP + Au sur 6,89 mètres). De plus, la coentreprise a estimé des ressources indiquées de 5,64 Mt à 0,60 % Ni, 0,66 % Cu, 0,03 % Co, 0,07 g/t Au, 0,32 g/t Pt et 1,31 g/t Pd sur les dépôts Bravo, Getty, Mystery, Pad, Timtu et Sylvie, et des ressources présumées de 1,77 Mt à 0,56 % Ni, 0,55 % Cu, 0,03 % Co, 0,06 g/t Au, 0,29 g/t Pt et 1,27 g/t Pd sur les dépôts Bravo, Getty et Mystery.

À l'ouest d'Amos, sur la propriété Dumont, **Royal Nickel** a effectué un nouveau calcul de ressources de nickel à l'intérieur d'un filon-couche mafique-ultramafique. En utilisant une teneur de coupure de 0,20 % Ni, les ressources mesurées et indiquées totalisent 1 159 Mt à 0,27 % Ni et les ressources présumées 581 Mt à 0,25 % Ni.

OR

Dans les mines d'or, en exploitation ou en construction, les programmes de mise en valeur et d'exploration ont permis de découvrir de nouvelles zones, de mieux définir des zones connues ou d'identifier le prolongement de celles-ci, généralement en profondeur;

Ressources Métanor a finalisé un nouveau calcul des ressources, à la mine Barry, comprenant les zones Principale, West, 43 et 45, qui permet d'augmenter les ressources indiquées à 7,70 Mt à 1,25 g/t Au et les ressources présumées à 10,41 Mt à 1,41 g/t Au.

À la mine Lamaque (Century Mining), un programme de mise en valeur et d'exploration sous terre a débuté en janvier 2010 et se poursuivra sur trois années. Les premières intersections aurifères proviennent du filon Bédard (ex.: 10,06 g/t Au sur 1,92 m, sondage 2610-7).

Au complexe minier Kiena (Mines d'Or Wesdome), des forages ont recoupé le prolongement de la zone S50 qui a fourni la plus grande portion de la production historique de la mine. Le sondage U4928 a obtenu 12,31 g/t Au sur 12,8 m.

À la mine Goldex (Mines Agnico-Eagle), autour de la zone principale GEZ, des forages et/ou des travaux de développement sont en cours sur les zones satellites E, M et D. Le sondage 84-051 a obtenu 2,04 g/t Au sur 160,5 m dans la zone D.

Mines Richmont, à la mine Beaufor, a effectué des forages près de la surface qui ont recoupé les extensions des zones W, 350 et 367, toutes situées au sud de la mine. Parmi les meilleures

intersections il y a 5,30 m à 29,69 g/t Au (sondage 80-44 dans la zone W).

North American Palladium effectue un approfondissement de 200 m du puits de production à la mine Géant Dormant. Des forages ont recoupé les prolongements de plusieurs zones, dont la 30 West, la 3 et la 785N (16 g/t Au sur 2,2 m).

À la zone Principale de la mine Casa Berardi (Mines Aurizon), des ressources mesurées et indiquées totalisant 5,35 Mt à 4,02 g/t et des ressources présumées de 1,37 Mt à 2,96 g/t Au, pouvant être exploitées par fosse à ciel ouvert, ont été calculées. De plus, des ressources mesurées et indiquées totalisant 0,72 Mt à 6,99 g/t, pour une exploitation souterraine, ont été évaluées.

Plusieurs projets de mise en valeur ont fait l'objet de nouveaux calculs de ressources et de travaux d'exploration avancée.

Pour les gîtes Norlartic-Kierens et Marban, Corporation minière NioGold et Mines Aurizon ont annoncé un nouveau calcul de ressources comprenant des zones situées près de la surface (0-200 m) ainsi que des zones plus profondes (>200 m). De plus, des forages ont recoupé une section minéralisée (4,52 g/t Au sur 3,6 m) dans la zone de cisaillement Norbénite, entre les gîtes aurifères Kierens et Zone H.

Sur le gisement Croinor, Blue Note Mining et Exploration First Gold ont terminé une étude de préfaisabilité où des réserves prouvées et probables de 689 829 t à 8,35 g/t Au ont été identifiées.

Adventure Gold a identifié des ressources présumées de 220 000 t à 3,14 g/t Au pour la zone Lapaska Centre de la propriété Lapaska.

Au projet Simkar, Eloro Resources et Megastar Development ont recoupé en forage, potentiellement une nouvelle zone aurifère (9,4 g/t Au sur 5,9 m) sous la zone B de l'ancienne mine Louvicourt Goldfields (en 2008, calcul de ressources présumées de 188 750 t à 10,23 g/t Au).

Sur le projet Barnat, adjacent à la mine en construction Canadian Malartic, Corporation Minière Osisko a réalisé un programme de forage détaillé qui a permis le calcul de ressources mesurées et indiquées totalisant 29,0 Mt à 2,09 g/t Au.

Au projet Comtois, **Minéraux Maudore** a évalué des ressources présumées de 4,87 Mt à 3,2 g/t Au près de la surface (<150 m), et de 3,25 Mt à 6,8 g/t Au à une profondeur de plus de 150 m.

Société d'exploration minière Vior a évalué, pour le gîte Douay Ouest, des ressources mesurées et indiquées totalisant 313 000 t à 7,75 g/t Au et des ressources présumées de 267 000 t à 8,53 g/t Au.

Tawsho Mining a calculé, pour le gîte Chevrier, des ressources présumées de 4,6 Mt à 1,99 g/t Au entre la surface et 250 m de profondeur.

Pour le gîte Vezza, North American Palladium et Mines Agnico-Eagle ont établi des ressources mesurées et indiquées totalisant 1,51 Mt à 5,9 g/t Au et des ressources présumées de 0,75 Mt à 5 g/t Au.

Pour le gîte Flordin, **North American Palladium** a annoncé des ressources mesurées et indiquées de 0,68 Mt à 4,25 g/t Au et des ressources présumées de 1,45 Mt à 3,63 g/t Au.

Corporation minière Northern Star a continué les forages à partir de galeries d'exploration au projet Midway jusqu'à l'arrêt des travaux en juin 2010. Un forage a recoupé un gabbro minéralisé (11,43 g/t Au sur 9,23 m; forage MU 225W-2) dans la zone Briar.

Au projet McKenzie-Break détenu par Corporation minière Northern Star et Britannica Resources, des forages ont traversé la zone Murray. Les meilleures intersections comportent 11,15 m à 5,05 g/t Au pour le sondage 10-171. Les forages ainsi que les travaux d'excavation de la rampe d'exploration ont cessé au mois de juin 2010.

Mines Aurizon a poursuivi les travaux sur sa propriété Joanna. Un nouveau calcul des ressources a été publié au cours de l'été : le gîte Hosco contient des ressources mesurées et indiquées de 40,55 Mt à 1,33 g/t Au et des ressources présumées de 23,17 Mt à 1,19 g/t Au.

Parmi les nombreux projets d'exploration aurifère du Québec à l'étape des forages d'exploration, ces projets, entre autres, ont obtenu d'importants résultats :

Corporation Minéraux Alexandria a recoupé, en forage, des horizons minéralisés sur de larges épaisseurs (2,01 g/t Au sur 78,77 m) situés à proximité, à l'est, des zones de l'ancienne mine Akasaba (Au-Cu).

À la propriété Malartic CHL, adjacente au projet Barnat, Corporation Minière Osisko et Mines de la Vallée de l'Or ont foré la zone Jeffrey (0,86 g/t Au sur 91,2 m).

À l'est de Lebel-sur-Quévillon, **Eagle Hill Exploration** a confirmé la continuité de la zone 27 et fait la découverte d'une nouvelle structure minéralisée (17,36 g/t Au sur 12,0 m, sondage EAG-10-240) au projet Lac Windfall.

URANIUM

À environ 275 km au nord de Chibougamau, dans le bassin sédimentaire des monts Otish, **Ressources Strateco** a fait la découverte d'une nouvelle lentille, MT-36, à 1,5 km au sud des trois lentilles connues du projet Matoush. Ainsi, le sondage

MT-10-011 a recoupé une intersection de 0,48 % U_3O_8 sur 4,2 m. À l'extrémité nord-est du bassin sédimentaire des monts Otish, **Ressources Abitex** a évalué des ressources indiquées de 391 000 t à 0,45 % U_3O_8 et des ressources présumées de 749 000 t à 0,56 % U_3O_8 sur l'ensemble des zones du gîte « L », propriété Lavoie.

LITHIUM

À 280 km au nord de Matagami (km 384 de la route de la Baie-James), **Lithium One** a publié une estimation de ressources indiquées de 11,75 Mt à 1,30 % Li₂O et des ressources présumées de 10,47 Mt à 1,20 % Li₂O sur le projet Lithium Baie James. Sur le projet Lac Pivert/Rose, **Exploration First Gold** a recoupé en forage plusieurs nouvelles intersections de dykes pegmatitiques à spodumène dont le sondage LR-10-110 qui a retourné des valeurs de 2,15 % Li₂O, 1 594 g/t Rb, 150 ppm Ta₂O₅, 147 ppm BeO, et 75 ppm Ga sur 12,6 m. Sur le gîte Rose, des ressources indiquées de 11,4 Mt à 1,34 % Li₂O et 377 ppm BeO, et des ressources présumées de 2,17 Mt à 1,27 % Li₂O et 311 ppm BeO et des teneurs en Ta₂O₅, Rb, Cs et Ga sont rapportées.

À environ 28 km à l'est de la communauté crie de Nemaska, **Exploration Nemaska** a estimé des ressources mesurées et indiquées de 9,8 Mt à 1,63 % Li₂O et 449 ppm BeO, et des ressources présumées de 15,4 Mt à 1,57 % Li₂O et 420 ppm BeO sur la propriété Whabouchi.

ÉLÉMENTS DES TERRES RARES (ÉTR)

Sur la propriété Strange Lake près de la rivière George dans la Fosse du Labrador, Quest Rare Minerals a évalué, pour la zone-B, des ressources présumées en éléments des terres rares (ÉTR) de 114,8 Mt à 1,00 % ÉTR₂O₃, 1,97 % ZrO₂, 0,20 % Nb₂O₅, 0,05 % HfO₂ et 0,08 % BeO. Exploration Midland avec son partenaire Japan Oil, Gas and Metals National Corporation ont fait la découverte de nouvelles zones contenant des indices d'ÉTR, sur les propriétés Ytterby 2 et Ytterby 3 situées respectivement 65 km et 100 km au sud de la zone-B de Quest Rare Minerals.

Au Témiscamingue, **Matamec Explorations** a effectué un nouveau calcul des ressources sur son projet d'ÉTR Zeus. Les ressources indiquées totalisent 2,51 Mt à 0,63 % ÉTR₂O₃ et 0,88 % ZrO₂ tandis que les ressources présumées sont de 4,73 Mt à 0,66 % ÉTR₂O₃ et 0,97 % ZrO₂.

MINÉRAUX INDUSTRIELS

Exploration Orbite VSPA a extrait un volume maximum de 500 tonnes d'argilite alumineuse à son site de Grande-Vallée en Gaspésie. Cet échantillon servira essentiellement à la réalisation d'essais métallurgiques dans son usine-pilote de Cap-Chat, au premier trimestre de 2011.

1.4 - Mise en valeur et développement minier

Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Martin Dumas, Germain Girard, Denis Raymond

L'année 2010 a été marquée par l'annonce de la mise en chantier de plusieurs nouveaux projets miniers.

FER

En septembre, la compagnie indienne **Tata Steel** annonçait un investissement de 300 M\$ pour relancer l'exploitation des mines de fer dans la région de Schefferville, fermées en 1982 par **Iron Ore Company of Canada**. Ce projet est réalisé en partenariat avec la société minière canadienne **New Millennium Capital**. Le minerai de fer extrait à Schefferville est expédié à Sept-Îles suite à un traitement de classification, il servira à alimenter les aciéries européennes de Tata Steel.

CUIVRE ET ZINC

Au sud de Matagami, sur les zones **Bracemac** et **McLeod** découvertes en 2007, **Xstrata Zinc Canada** a débuté le fonçage d'une rampe en vue d'amorcer l'exploitation en 2013. Actuellement, les ressources indiquées sont évaluées à 3,62 Mt titrant 11,52 % Zn, 1,6 % Cu, 31,55 g/t Ag et 0,49 g/t Au. Également, sur la zone **Deep McLeod**, la coentreprise a calculé des ressources présumées de 2,47 Mt à 9,21 % Zn, 1,22 % Cu, 39,81 g/t Ag et 1,12 g/t Au.

Dans le secteur de Lebel-sur-Quévillon, **Ressources Breakwater** a poursuivi le développement de deux rampes pour la mine Langlois, une de la surface vers le sommet de la zone 4 et l'autre interne pour atteindre la zone 3.

À 275 km au nord-est de Chibougamau, Western Troy Capital Resources a initié une étude de faisabilité ainsi qu'une étude d'impact environnemental et du milieu social pour une exploitation à ciel ouvert sur le projet de cuivre-molybdèneargent du Lac Macleod.

NICKEL, CUIVRE, COBALT ET ÉLÉMENTS DU GROUPE DU PLATINE (ÉGP)

À l'extrémité nord du Québec, à 20 km au sud de la mine Raglan, Jien Canada Mining en partenariat avec Canadian Royalties, a débuté la construction des infrastructures en vue de l'exploitation des dépôts Expo et Mesamax, sur sa propriété Nunavik Nickel. La construction avait cessé en août 2008, à la suite de problèmes de financement. Le démarrage de l'exploitation du site est prévu pour 2012.

OR

Mines Richmont a effectué des travaux de réhabilitations à l'ancienne mine Francoeur dans le but d'en relancer la production. Le début de la production est prévu au cours de l'été 2011.

Corporation Minière Osisko a réalisé d'importants travaux de préparation et de développement pour finaliser la mise en œuvre de son projet de mine à ciel ouvert, Canadian Malartic. L'exploitation pour une production commerciale devrait débuter au printemps 2011.

Corporation minière Northern Star a poursuivi le développement d'une rampe et de galeries d'exploration au projet Malartic-Midway, jusqu'à l'arrêt des travaux en juin 2010.

Pour le projet McKenzie-Break, Corporation minière Northern Star et Britannica Resources ont excavé une rampe d'exploration dans la zone Murray jusqu'à une profondeur de 80 mètres et réalisé des forages d'exploration. Les travaux ont été suspendus au mois de juin 2010.

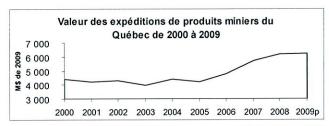
URANIUM

Ressources Strateco a poursuivi ses activités relatives au développement de son projet d'uranium Matoush situé en terres conventionnées selon la Convention de la Baie-James et du Nord québécois (CBJNQ). L'étude d'opportunité économique a été mise à jour. Ce projet a fait l'objet d'une évaluation des impacts environnementaux et sociaux ainsi que d'audiences publiques, menées par le Comité provincial d'examen (COMEX) et la Commission fédérale d'examen (COFEX), en mai et novembre 2010. Des groupes se sont prononcés contre le projet, entre autres, la communauté crie de Mistissini et le Grand Conseil des Cris.

LITHIUM

En Abitibi, à l'ouest de Barraute, sur le site de l'ancienne mine Québec Lithium, **Canada Lithium** a évalué des ressources mesurées et indiquées de 46,67 Mt à 1,19 % Li₂O et des ressources présumées de 57,58 Mt à 1,18 % Li₂O. Les tests métallurgiques sont terminés et l'étude de faisabilité a été complétée au début de décembre 2010.

DIAMANT


À 360 km au nord de Chibougamau, **Stornoway Diamond** a débuté une étude de faisabilité ainsi qu'une étude d'impact environnemental et du milieu social sur le projet diamantifère **Renard**, qui devraient être complétées à l'automne 2011.

1.5 - Exploitation minière

Martin Labrecque, Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Martin Dumas, Germain Girard, Denis Raymond

Selon les données préliminaires, la valeur totale des expéditions de produits miniers en 2009 a atteint 6,2 G\$ (métalliques et non métalliques; figure 1.2). Cette valeur serait pratiquement identique à celle observée en 2008, et ce, en dépit du ralentissement économique mondial débuté en 2008 qui a pourtant considérablement affecté le secteur minier au Canada et dans le monde. Le secteur minier au Québec aurait donc traversé la crise économique avec moins de difficulté que celui des autres provinces canadiennes. Les données prévisionnelles pour 2010 laissent présager une valeur totale des expéditions similaire à celles de 2008 et 2009.

FIGURE 1.2

Source : Institut de la statistique du Québec. Les données pour 2009 sont préliminaires.

En 2009, toujours selon les données préliminaires, les activités d'extraction minière au Québec (métallique et non métallique) créaient un total de 10 272 emplois directs répartis dans toutes les régions du Québec (figure 1.3), principalement dans les régions de l'Abitibi-Témiscamingue, de la Côte-Nord et du Nord-du-Québec. Au total, en incluant les activités de première transformation et les entreprises de forage au diamant, le secteur minier au Québec comptait 13 745 emplois directs, en baisse de 8 % par rapport à 2008.

Notons aussi que, par l'ampleur de ses activités et de ses investissements, le secteur minier contribue à la création de plusieurs milliers d'emplois indirects répartis dans l'ensemble du Québec.

FIGURE 1.3

Source : Institut de la statistique du Québec. Les données pour 2009 sont préliminaires.

En 2010, la reprise économique vigoureuse au niveau mondial et la forte demande pour les ressources naturelles a permis aux exploitations minières du Québec de fonctionner à plein régime.

FER

Au premier semestre, Consolidated Thompson Iron Mines a terminé l'aménagement de son complexe minier du Lac Bloom. En juillet, elle a expédié sa première cargaison de concentré de fer vers le marché chinois. Par la suite, elle a poursuivi ses travaux de démarrage et d'amélioration jusqu'à sa production commerciale. Présentement, la compagnie envisage d'augmenter la capacité de production de la mine du Lac Bloom de 8 à 16 Mtm/an de concentré de fer et ce, d'ici deux à trois ans.

Tout au long de l'année, ArcelorMittal Mines Canada a réalisé une série d'études portant sur une augmentation importante de sa capacité de production de concentré et de boulettes de fer à ses installations du Mont-Wright et de Port-Cartier. Pour ce projet, la décision finale devrait se prendre dans le premier semestre de 2011.

OR

North American Palladium a approfondi de 200 mètres son puits de production de la mine d'or **Géant Dormant afin** d'exploiter de nouvelles réserves de minerai.

MINÉRAUX INDUSTRIELS

L'agrandissement de l'usine à la mine **Niobec** a été complété au cours de 2010. Ces nouvelles installations permettront d'augmenter de 24 % la capacité de traitement du minerai. La durée de vie de la mine est assurée jusqu'en 2024.

La compagnie **Graymont** a construit une usine de déchiquetage de résidus de bois de construction pour alimenter le four vertical à son usine de **Marbleton**. À sa carrière de **Bedford**, elle a obtenu un important contrat de vente pour produire 350 000 tonnes de pierre concassée pour la construction d'un échangeur autoroutier.

Des investisseurs québécois et européens ont permis de relancer la carrière d'ardoise **Glendyne** à Saint-Marc-du-Lac-Long et le retour de 250 travailleurs.

TOURBE

En 2010, selon les informations préliminaires, les prévisions du volume de production pour la tourbe seraient de plus de 20 % supérieures aux niveaux de 2009.

TABLEAU 1.1	l - Prix moyen	s de certains	métaux en \$ l	JS.			
Moyennes	Or¹	Argent ²	Platine ³	Zinc ⁴	Nickel ⁵	Cuivre ⁶	Fer ⁷
annuelles	par once	par once	par once	par livre	par livre	par livre	par tonne
2000	279,11	4,95	544,03	0,51	3,92	0,82	25,57
2001	271,04	4,37	529,04	0,40	2,70	0,72	23,87
2002	309,73	4,60	539,13	0,36	3,07	0,71	26,04
2003	363,38	4,89	691,31	0,41	4,37	0,81	32,30
2004	409,72	6,67	845,31	0,48	6,27	1,30	37,92
2005	444,74	7,32	896,87	0,63	6,69	1,67	44,50
2006	603,46	11 ₇ 55	1142,31	1,49	11,00	3;05	53,88
2007	695,39	13,38	1303,05	1,47	16,88	3,23	59,64
2008	871,96	14,99	1573,53	0,85	9,57	3,15	70,43
2009	972,35	14,67	1203,49	0,75	6,78	2,30	70,00
2010	1224,67	20,16	1610,12	0,98	9,85	3,41	110,00
Moyennes m	ensuelles pou	ır 2010					
Janvier	1117,96	17,79	1562,70	1,11	8,37	3,35	. 60,00
Février	1095,41	15,87	1520,35	0,98	8,61	3,11	60,00
Mars	1113,34	17,11	1599,40	1,03	10,19	3,39	60,00
Avril	1148,69	18,10	1 <i>7</i> 15,55	1,07	11,77	3,52	120,00
Mai	1205,43	18,42	1622,58	0,90	10,04	3,11	120,00
Juin	1232,92	18,45	1553,20	0,79	8,79	2,95	120,00
Juillet	1192,97	17,96	1525,60	0,84	8,85	3,06	140,00
Août	1215,81	18,36	1541,10	0,93	9,70	3,30	140,00
Septembre	1271,10	20,55	1591,80	0,98	10,27	3,50	140,00
Octobre	1342,02	23,39	1688,70	1,07	10,80	3,76	120,00
Novembre	1369,89	26,54	1692,80	1,00	10,00	3,65	120,00
Décembre	1390,55	29,35	1707,70	1,05	10,85	4,20	120,00

- 1: London metal exchange (LME) selon Kitco (onces troy). Moyenne des prix à midi.
- 2: London metal exchange (LME) selon Kitco (onces troy). Moyenne des prix à midi. 3: London metal exchange (LME) selon Kitco (onces troy). Moyenne des prix à midi.
- 4: London metal exchange (LME) selon AME et Kitco. Prix de référence.
- 5: London metal exchange (LME) selon AME et Kitco. Prix de référence. 6: London metal exchange (LME) selon AME et Kitco. Prix de référence.
- 7: De 2000 à 2009 : Prix estimés par la USGS selon les prix reportés par les producteurs américains. 2010 : AME. (Prix négocié 62 % Fe)
- * un once troy (or, argent, platine) = 31,1034 grammes comparativement à l'once généralement utilisée (once avoirdupois) qui est l'équivalent de 28,3495 grammes.

CHAPITRE 2 - RÉGIME MINIER ET ACCÈS AU TERRITOIRE

Dorra Djemal, Roch Gaudreau, Jocelyne Lamothe

2.1 - Principes de base

Le régime minier du Québec est basé sur les principes suivants :

- L'accès à la ressource minérale est ouvert sur la plus vaste partie du territoire possible (domaine de l'État), et ce, afin de pouvoir déceler les gisements riches en métaux et en minéraux, recelés dans la croûte terrestre du Québec.
- Les demandeurs sont sur un pied d'égalité pour l'obtention de titres miniers. Le premier à présenter une demande conforme obtient le droit exclusif de rechercher toutes les substances minérales du domaine de l'État sur le territoire désigné (claim).
- En cas de découverte de substances minérales exploitables, le titulaire de claim a l'assurance raisonnable de pouvoir obtenir le droit d'exploiter la ressource découverte (Bail). La demande de bail doit répondre aux conditions prescrites par la Loi sur les mines et son règlement d'application.

La Loi sur les mines a pour but de favoriser la prospection, l'exploration et l'exploitation des substances minérales, en tenant compte des autres possibilités d'utilisation du territoire.

2.2 - Titres miniers

Les droits miniers, conférés au moyen des titres miniers, sont des droits réels et immobiliers, ils peuvent ainsi faire l'objet de transactions. Cependant, le droit minier et le droit foncier sont des droits dissociés. À cet égard, tout titre minier constitue une propriété distincte de la propriété de surface.

Il existe deux types de titres miniers pour les substances minérales faisant partie du domaine de l'État, autres que le pétrole, le gaz naturel et la saumure, ceux autorisant la recherche minière « Titres d'exploration » et ceux délivrés pour l'exploitation minière « Titres d'exploitation » :

TITRES D'EXPLORATION

Le claim confère un droit exclusif d'explorer pour toutes les substances minérales du domaine de l'État sur le territoire qui en fait l'objet. Son principal mode d'acquisition est la désignation sur carte via le système GESTIM Plus. Le claim a une période de validité de deux ans et est renouvelable.

TITRES D'EXPLOITATION

Il existe deux types de titres d'exploitation au Québec. Selon la nature de la substance exploitée, on peut être titulaire d'un bail minier ou d'un bail d'exploitation de substances minérales de surface.

Le bail minier

Il faut détenir un bail minier afin de pouvoir exploiter toute substance minérale autre que les substances minérales de surface. Sa superficie ne doit pas excéder 100 hectares. La durée initiale du bail est de 20 ans et est renouvelable aux 10 ans pendant trois périodes de renouvellement.

Pour obtenir un bail minier, le demandeur doit :

- Produire un rapport d'un ingénieur ou d'un géologue décrivant la nature, l'étendue et la valeur probable du gisement;
- · Acquitter le loyer annuel;
- · Déposer un plan d'arpentage;
- Obtenir l'autorisation du titulaire du droit foncier, s'il y a lieu;
- Déposer un plan de réaménagement et de restauration et une garantie financière;
- Obtenir un permis d'intervention en milieu forestier, s'il y a lieu;
- Obtenir un certificat d'autorisation du Ministère du Développement durable, de l'Environnement et des Parcs;
- Avoir l'autorisation du ministre (MRNF) pour l'emplacement d'une usine de traitement et d'un parc à résidus.

Pour renouveler un bail minier, le titulaire du bail doit avoir respecté les dispositions de la Loi sur les mines et de son règlement afférent au cours de la période de validité du bail et doit, entre autres, démontrer qu'il a fait de l'exploitation minière sur le terrain faisant l'objet du bail minier pendant au moins deux des dix dernières années de la validité du bail.

Les baux et l'autorisation d'exploitation de substances minérales de surface

- 1. Le bail exclusif est émis pour les substances minérales de surface consolidées, également pour les dépôts meubles lorsqu'une garantie d'approvisionnement est nécessaire pour une activité industrielle ou pour l'État afin d'effectuer des travaux de construction de chemins publics ou autres ouvrages de l'État. Cette autorisation donne au bénéficiaire un droit exclusif d'exploitation qui lui confère la responsabilité environnementale du site.
- Le bail non exclusif est émis à des fins de construction pour les dépôts meubles (sable, gravier et l'argile commune).
- 3. L'autorisation d'extraction sans bail est émise à des fins ponctuelles, quand les délais sont critiques.

2.3 - Titres miniers actifs

Au 31 décembre 2010, le nombre de titres miniers actifs au Québec était de 230 929 totalisant une superficie de 10 358 362 hectares soit une augmentation, par rapport à l'année 2009, de 14,15 % du nombre des titres miniers actifs et de 16,19 % de la superficie totale qui en fait l'objet (figure 2.1).

On note une augmentation du nombre de titres d'exploration par rapport à l'année 2009, et ce, dans la plupart des régions administratives du Québec, notamment la région administrative de l'Estrie (303,2-%), du Centre-du-Québec (284,2-%), de la Chaudière-Appalaches (241 %) et de la Montérégie (142,9 %) (tableau 2.1).

Le nombre de titres d'exploitation au Québec, au 31 décembre 2010, est à l'ordre de 3435, incluant les baux miniers et les baux d'exploitation de substances minérales de surface (tableau 2.2).

2.4 - Le système de gestion des titres miniers « GESTIM Plus »

Au Québec, la gestion des titres miniers est informatisée et facilement accessible à partir d'Internet via l'application géomatique « GESTIM Plus ». Ce système offre un accès instantané aux données actualisées du Registre des droits miniers, réels et immobiliers du Québec et permet, entre autres :

- de réduire le coût d'acquisition et de suivi des titres miniers pour les intervenants en exploration minière;
- de consulter et de télécharger les données du registre public des droits miniers en sélectionnant les paramètres désirés;
- de visualiser les cartes des titres miniers et de les télécharger gratuitement en format PDF;
- de générer des cartes de titres miniers adaptées aux besoins;
- d'effectuer une demande de désignation ou de renouvellement de claim;
- de payer les droits requis par l'intermédiaire du commerce électronique dans un environnement sécuritaire.

L'adresse du système GESTIM Plus est :

http://gestim.mines.gouv.qc.ca

NOUVEAUTÉS EN 2010

Le Secteur des mines prend résolument le virage Web en élargissant son offre de service dans GESTIM Plus. En effet, depuis le 1^{er} avril 2010 le seul moyen accepté pour présenter un avis de désignation sur carte est via le système GESTIM Plus. Les modes de paiement acceptés lors du dépôt d'un tel

avis sont soit la carte de crédit ou le solde à l'intervenant pour les membres privilégiés de GESTIM Plus. Puisque l'heure de réception des avis de désignation sur carte permet d'établir l'ordre dans lequel le registraire procédera à leur traitement, l'ordre de réception a été défini à partir de l'heure du serveur de GESTIM Plus.

http://www.mrnf.gouv.qc.ca/mines/titres/titres-exploration-directives.jsp

2.5 - L'exploration minière en territoire urbanisé

Depuis le 12 août 2010, le MRNF a mis en vigueur une directive relative aux claims émis dans les limites des territoires urbanisés. Cette directive a pour but d'encadrer de façon particulière les travaux d'exploration en territoire urbanisé afin de minimiser les conflits d'usage entre le titulaire du claim et la municipalité. Cette directive a été modifiée le 23 septembre 2010.

Les conditions et obligations imposées par cette directive au titulaire d'un claim situé dans un territoire urbanisé sont :

- Le titulaire du claim doit informer la municipalité, par écrit, de l'obtention de son claim dans les 60 jours suivant sa délivrance.
- Le titulaire du claim doit informer la municipalité, par écrit, des travaux qu'il entend effectuer sur les terrains situés à l'intérieur du territoire urbanisé, au moins 48 heures avant le début de ces travaux.
- Le titulaire du claim doit fournir au MRNF, sur demande, copie des avis transmis à la municipalité.
- Le défaut de se conformer à ces conditions peut entraîner la suspension ou la révocation du claim.

Les limites des territoires urbanisés, telles que définies dans le Registre des droits miniers réels et immobiliers du Québec, sont celles visées par cette directive. Ces limites peuvent être consultées via l'application Web de GESTIM Plus.

http://gestim.mines.gouv.qc.ca

Suivant la réception de la demande de claim dans un territoire urbanisé, le ministère consulte la municipalité concernée, afin qu'elle lui fasse part de ses préoccupations. Les conditions spécifiques demandées par les municipalités sont communiquées au titulaire du claim et diffusées dans l'application Web de GESTIM Plus, tel que spécifié dans la directive.

Le titulaire de claim est tenu de se conformer aux conditions et obligations imposées par la directive. À défaut, le ministre pourrait suspendre ou révoquer le claim.

http://www.mrnf.gouv.qc.ca/mines/titres/titres-exploration-directives-claims.jsp

2.6 - Relations avec les communautés autochtones

La Cour suprême du Canada a rendu, au cours des dernières décennies, plusieurs décisions concernant les droits autochtones qui font ressortir l'importance de mettre en balance les intérêts des autochtones et ceux de la société en général. Cette recherche d'équilibre vise à permettre de réaliser l'objectif fondamental de l'article 35 de la Loi constitutionnelle de 1982, lequel reconnaît et confirme les « droits existants – ancestraux ou issus de traité – des peuples autochtones du Canada ». Dans la poursuite de cet objectif de conciliation, les tribunaux ont insisté sur le respect, par les gouvernements, du principe de l'honneur de la Couronne dans les rapports avec les autochtones ainsi que des obligations qui peuvent en découler.

Parmi les obligations auxquelles le principe d'honneur de la Couronne a donné naissance, celui décrit par la Cour suprême dans les arrêts *Haïda et Taku River* de 2004, stipule que la Couronne a l'obligation de consulter les communautés autochtones, et s'il y a lieu de les accommoder, lorsqu'elle envisage une action susceptible d'avoir un effet préjudiciable sur les droits que ces communautés revendiquent et qu'elles pourraient détenir.

Dans le respect des jugements de la Cour suprême du Canada, depuis 2006 le MRNF respecte son obligation de consultation et d'accommodement des communautés autochtones, notamment avant l'émission d'un titre d'exploitation tel qu'un bail minier (BM), un bail exclusif (BEX) pour l'exploitation de substances minérales de surface, un bail non exclusif (BNE) pour l'exploitation de substances minérales de surface, et une autorisation sans bail (ASB). Le Secteur des mines consulte également pour tous les travaux d'exploration majeurs, entre autres, l'excavation impliquant un déplacement de dépôts meubles de 10 000 m³ et plus, le décapage du roc, l'extraction ou le déplacement de substances minérales à des fins d'échantillonnage géologique ou géochimique en quantité de 500 tonnes métriques et plus, le fonçage de rampes d'accès, de puits ou de toute autre excavation, le dénoyage de puits de mine et le maintien à sec des excavations.

Par ailleurs, les collectivités autochtones manifestent de plus en plus leur volonté de participer aux projets de développement qui ont cours dans les territoires sur lesquels elles revendiquent des droits et intérêts. Dans ce contexte, le gouvernement s'est engagé dans la Stratégie minérale du Québec à favoriser le dialogue entre les sociétés minières et les communautés autochtones pouvant mener à la signature d'ententes sur les répercussions et les avantages de l'activité minière, visant une meilleure acceptabilité sociale des projets miniers.

2.7 - Protection du territoire

Afin de tenir compte des autres possibilités d'utilisation du territoire, le ministre peut, en vertu de l'article 304 de la Loi sur les mines, réserver à l'État ou soustraire au jalonnement, à la désignation sur carte, à la recherche minière ou à l'exploitation minière, tout terrain contenant des substances minérales qui font partie du domaine de l'État et nécessaire à tout objet qu'il juge d'intérêt public, notamment l'exécution de travaux et ouvrages tels:

- installations minières, industrielles, portuaires, aéroportuaires ou de communications;
- aménagement et utilisation de forces hydrauliques, de lignes de transport d'énergie électrique, de réservoirs d'emmagasinage ou de réservoirs souterrains;
- · création de parcs ou de réserves écologiques;
- classement en tant qu'écosystème forestier exceptionnel;
- · désignation de refuges biologiques.

Le ministre peut également par arrêté délimiter des territoires à des fins non exclusives de récréation, de tourisme ou de conservation de la flore et de la faune.

De plus, le ministre peut, par arrêté, permettre, aux conditions qu'il fixe sur un terrain réservé à l'État, que certaines substances minérales qu'il détermine puissent, conformément à la Loi sur les mines, faire l'objet de recherche minière ou d'exploitation minière.

L'arrêté entre en vigueur le jour de sa publication à la Gazette officielle du Québec ou à toute autre date ultérieure qui y est indiquée.

Antérieurement à la prise d'un arrêté, le ministre peut suspendre temporairement, pour une période de 18 mois, le droit de jalonner et de désigner sur carte ces terrains dont les limites sont indiquées sur des cartes conservées au bureau du registraire. Cette suspension prend effet, après le dépôt d'un avis au bureau du registraire, à la date indiquée sur l'avis.

2.8 - Contraintes à l'exploration minière

Au 31 décembre 2010, les terrains faisant l'objet de contraintes à l'exploration couvraient 34,9 M d'hectares, ce qui correspond à 20,9 % du territoire québécois. Les terrains faisant l'objet d'une contrainte majeure avec exploration minière interdite couvraient une superficie de 15,2 M d'hectares soit 9,1 % de la superficie du Québec (figure 2.2). Les terrains avec suspension temporaire couvraient 8,7 M d'hectares soit 5,2 %

de la superficie du Québec. Les terrains faisant l'objet d'une contrainte mineure avec exploration possible sous conditions occupaient une superficie de 11,0 M d'hectares soit 6,6 % du Québec. À titre de comparaison, la superficie occupée par des titres miniers est de 8,9 M d'hectares soit 5,5 % de la superficie du Québec (figure 2.1). Les terrains reconnus comme aires protégées selon l'Union internationale pour la conservation de la nature couvrent une superficie de 8,1 % du territoire québécois et sont inclus dans le 20 % du territoire qui fait l'objet de contraintes à l'exploration.

2.9 - Délégation de la gestion du sable et gravier aux MRC

À l'automne 2008, le Conseil des ministres autorisait la ministre des Affaires municipales et des Régions et la ministre des Ressources naturelles et de la Faune à signer une entente avec la Fédération québécoise des municipalités (FQM) et l'Union des municipalités du Québec (UMQ). Cette entente vise entre autres à confier aux municipalités régionales de comté (MRC) la gestion de l'exploitation du sable et du gravier sur les terres du domaine de l'État. En juin 2009, le Conseil des ministres a adopté le décret sur la décentralisation de la gestion du sable et gravier.

Plus de 2700 baux et autorisations pour l'exploitation de sable et de gravier sont annuellement gérés au Québec. Les redevances perçues et les revenus en loyer sont de l'ordre de 3,2 M\$ par an pour l'ensemble du territoire québécois (tableau 2.3). La majorité de cette somme provient des régions du Nord-du-Québec, du Saguenay—Lac-Saint-Jean, de la Côte-Nord et de l'Abitibi-Témiscamingue.

Les pouvoirs et responsabilités qui seront dévolus aux MRC, en ce qui concerne le sable et le gravier, sont :

- l'octroi, le renouvellement, la révocation et l'inscription au registre des droits miniers, réels et immobiliers des autorisations d'extraction et des baux d'exploitation de sable et gravier;
- L'obtention de certificats d'autorisation en application de l'article 22 de la Loi sur la qualité de l'environnement;
- l'inspection et le contrôle de l'exploitation de ces substances;
- · la perception des loyers et des redevances;
- · la restauration des sablières et gravières.

Durant l'année 2010, les MRC des régions du Saguenay—Lac-Saint-Jean, des Laurentides, de Lanaudière et du Bas-Saint-Laurent ont pris en charge la gestion de l'exploitation du sable et du gravier. Ce sera le cas pour les MRC des régions de la Capitale-Nationale et de la Mauricie, et ce, à partir du 1^{er} avril 2011 (figure 2.3).

Cette délégation totalise, pour l'année 2010, le transfert de 601 baux et autorisations pour des revenus de loyers de 118 596 \$ et des redevances de 398 573 \$ (tableaux 2.3).

Plusieurs autres régions administratives se sont montrées intéressées par ce projet de délégation de gestion. De nouvelles ententes avec d'autres MRC devraient faire l'objet de signatures dans le courant de l'année 2011.

2.10 - Projet de loi 79 modifiant la Loi sur les mines

La Stratégie minérale du Québec a proposé des actions pour préparer l'avenir du secteur minéral. Pour mettre en œuvre plusieurs de ces actions, des modifications législatives sont requises. À cet effet, le ministre délégué aux Ressources naturelles et à la Faune a déposé, le 2 décembre 2009, à l'Assemblée nationale, le projet de loi nº 79 modifiant la Loi sur les mines.

Une commission parlementaire s'est penchée sur le projet de loi 79 au début de l'année 2010, soit la Commission de l'agriculture, des pêcheries, de l'énergie et des ressources naturelles. Des débats parlementaires et des audiences publiques élargies sur le projet de loi se sont déroulés durant l'année 2010 au sein de la dite commission. Le projet de loi 79 y demeure en étude.

Les modifications proposées dans le projet de loi 79 visent à :

STIMULER LES TRAVAUX D'EXPLORATION SUR LE CLAIM

- Limiter la durée de vie des crédits de travaux à dix ans;
- Retirer la possibilité d'effectuer un paiement au lieu des travaux, sauf pour la première période de validité d'un claim;
- Diminuer la superficie sur laquelle les crédits de travaux peuvent être utilisés pour renouveler d'autres claims;
- Retirer la possibilité d'utiliser les crédits de travaux d'exploration effectués sur un bail minier ou une concession minière pour renouveler un claim;
- Indexer et majorer les exigences des travaux requis pour renouveler un claim (modification réglementaire).
- Garantir la restauration des sites miniers.

Exploration minière

- Augmenter de 70 à 100 % la couverture de la garantie qui assure les travaux de restauration;
- Élargir la garantie financière pour inclure davantage que les aires d'accumulation de résidus miniers;
- Instaurer une sanction pénale lorsque le versement de la garantie financière n'a pas été effectué.

Exploitation minière

- Augmenter de 70 à 100 % la couverture de la garantie qui assure les travaux de restauration;
- Élargir la portée de la garantie financière pour inclure davantage que les aires d'accumulation de résidus miniers;
- Revoir le calendrier de dépôt afin d'accélérer le versement de la garantie financière;
- Prévoir une mesure de transition de 3 ans pour les mines actives, suivi du versement complet sur 5 ans;
- Instaurer une sanction pénale lorsque le versement de la garantie financière n'a pas été effectué selon le calendrier;
- Protéger les travaux de réaménagement et de restauration effectués sur les aires d'accumulation;
- Réviser le seuil pour les études d'impact environnemental de 7000 à 3000 tonnes métriques;
- Obliger le dépôt d'un plan de restauration pour les fins des audiences du BAPE et des consultations communautaires;
- Resserrer les exigences pour obtenir un certificat de libération après l'exécution des travaux prévus au plan de restauration.

CONCILIER LES USAGES DU TERRITOIRE

- Pouvoir tenir compte des autres utilisations du territoire, par exemple une planification régionale, afin de soustraire ou de réserver à l'État;
- Ajouter l'intérêt public comme motif de refus ou de nonrenouvellement d'un bail d'exploitation de substances minérales de surface;
- Pouvoir refuser d'émettre un bail d'exploitation de sable et de gravier lorsqu'il y a incompatibilité d'usages;
- Refuser une demande de bail d'exploitation de substances minérales de surface sur un terrain lorsqu'il s'y trouve déjà certains aménagements;
- Obliger la tenue de consultations communautaires pour tous les projets miniers (sauf de substances minérales de surface; mais incluant la tourbe);
- · Protéger les eskers contenant de l'eau;
- Concéder les substances minérales de surface en terres privées aux propriétaires fonciers;

- Obliger le titulaire de claim à informer le propriétaire ou le locataire foncier de la délivrance d'un claim sur sa propriété privée;
- Obliger la déclaration de recherche d'uranium lors de la demande de claim et en déclarer obligatoirement la découverte (et mesures de protection dans le règlement);
- Obliger le titulaire de claim à obtenir l'autorisation écrite du propriétaire foncier avant d'accéder à sa propriété privée et y effectuer des travaux d'exploration minière;
- Obliger le prospecteur à obtenir l'autorisation écrite du propriétaire foncier avant d'accéder à sa propriété privée;
- Pouvoir restreindre ou interdire l'activité minière sur un terrain compris à l'intérieur d'un territoire urbanisé.

ENRICHIR LE PATRIMOINE DE CONNAISSANCES GÉOLOGIOUES DU OUÉBEC

 Obliger les sociétés minières à déposer au MRNF tous les travaux d'exploration effectués en concordance avec les crédits d'exploration réclamés en vertu de la Loi concernant les droits sur les mines.

2.11 - La fiscalité minière

La fiscalité minière québécoise se distingue de celle des autres provinces et territoires, notamment au chapitre des incitatifs fiscaux visant à encourager l'exploration minière ainsi que la mise en développement de nouvelles mines. Les principaux incitatifs fiscaux visant le secteur minier concernent:

- le régime québécois des actions accréditives, en vertu duquel les investisseurs particuliers peuvent réclamer des déductions pouvant atteindre 150 % du coût de leur investissement; http://www.mrn.gouv.qc.ca/mines/ fiscalite/fiscalite-mesures-actions.jsp
- le crédit d'impôt remboursable relatif aux ressources, introduit en 2001, qui accorde aux sociétés un remboursement pouvant atteindre 38,75 % des dépenses d'exploration admissibles qu'elles engagent au Québec; http://www.mrn.gouv.qc.ca/mines/fiscalite/fiscalite-mesures-ressources.jsp
- le crédit de droits remboursable pour perte, mesure unique au Canada, introduit en 1985, qui permet à un exploitant minier de se faire rembourser la valeur fiscale de certains investissements au chapitre de l'exploration et de l'aménagement et mise en valeur avant production. Ce crédit donne droit à un remboursement égal à 12 % avant le 31 mars 2010, 14 % après le 30 mars 2010 et avant le 1^{et} janvier 2011, 15 % en 2011 et 16 % à compter du 1^{et} janvier 2012. http://www.mrn.gouv.qc.ca/mines/fiscalite/fiscalite-regime-perte.jsp

2.12 - Projet de loi modifiant la Loi concernant les droits sur les mines

Les dernières modifications majeures apportées au régime de droits miniers du Québec remontent à la réforme du 12 mai 1994. Or, depuis les 15 dernières années, l'environnement dans lequel a évolué l'industrie minérale a connu d'importants changements. De plus, les analyses périodiques ont démontré que le régime en vigueur ne permettait pas d'atteindre l'ensemble des objectifs que s'était fixé le gouvernement, notamment en ce qui concerne la rentabilité du régime pour l'État.

Dans ce contexte, la Stratégie minérale du Québec, présentée le 29 juin 2009, annonçait un examen du régime de redevances minières afin d'assurer au Québec une juste part des bénéfices de l'exploitation de ses ressources minérales, tout en considérant la compétitivité des entreprises et la maximisation des retombées.

Depuis, le régime de droits miniers a été examiné en profondeur, et le gouvernement a mis de l'avant une importante révision de ce régime afin de l'adapter aux nouvelles réalités du secteur minéral. Le Discours sur le budget du 30 mars 2010 contient l'ensemble des modifications apportées à ce régime.

(http://www.budget.finances.gouv.qc.ca/budget/2010-2011/fr/documents/renseignementsadd.pdf)

Le régime révisé se caractérise par :

- une approche « mine par mine » : ce concept s'applique à un exercice financier d'un exploitant débutant après le 30 mars 2010 et fait en sorte que les pertes relatives à une mine ne peuvent réduire les profits d'une autre mine;
- la notion d'exploitant admissible;

- un taux d'imposition progressif;
- un nouveau taux pour le crédit de droits remboursable pour perte;
- la modification et l'ajout d'allocations :
- allocation additionnelle pour une mine située dans le Nord québécois;
- · allocation pour amortissement;
- allocation pour exploration;
- allocation pour aménagement et mise en valeur avant production;
- allocation pour aménagement et mise en valeur après production;
- · allocation pour traitement;
- de nouvelles règles d'application pour les travaux financés par actions accréditives dont l'exclusion de certains frais;
- · des règles s'appliquant aux pierres précieuses;
- le maintien de la fiducie pour l'environnement.

(Voir également http://www.mrn.gouv.qc.ca/mines/fiscalite/fiscalite-regime.jsp)

Le MRNF, le ministère des Finances et Revenu Québec travaillent de concert pour qu'un projet de loi modifiant la Loi concernant les droits sur les mines soit déposé au printemps 2011.

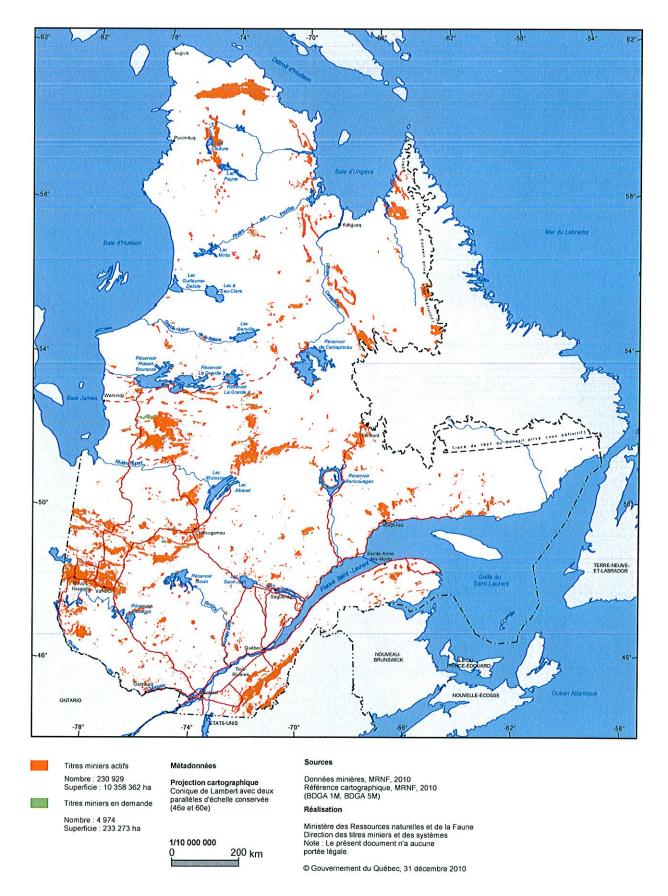


FIGURE 2.1. Titres miniers d'exploration et d'exploitation au Québec.

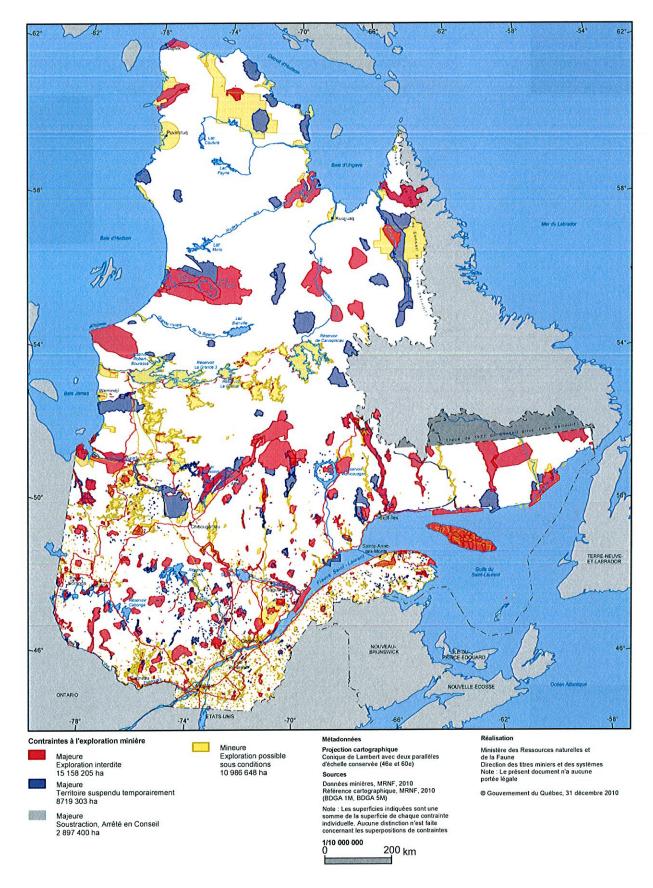


FIGURE 2.2. Contraintes à l'exploration minière au Québec.

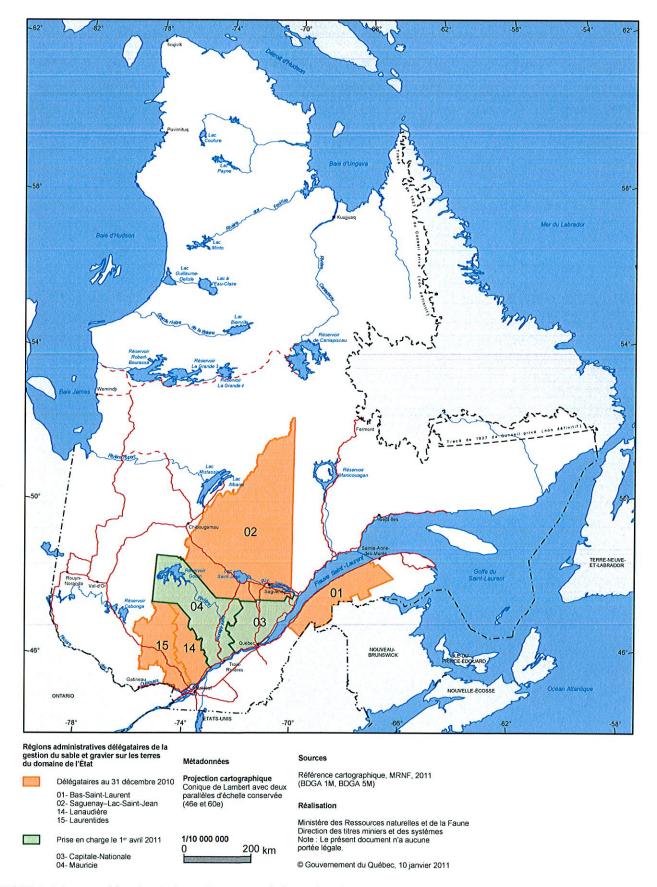


FIGURE 2.3. Répartition des droits et des revenus de la gestion du sable et gravier par région administrative pour 2009-2010.

	Nombre de titres			Superficie (ha)				
Régi	ion administrative	(CL, CDC,	CLD, PRF)	Changement = = = = = = = = = = = = = = = = = = =			Changement en %	
		2009	2010	= (1170 -	2009	2010	_	
1	Bas-Saint-Laurent	813	1 224	50,6	41 438	61 486	48,4	
2	Saguenay-Lac-Saint-Jean	7 529	6 627	(12,0)	396 792	349 355	(12,0)	
3	Capitale-Nationale	1 503	1 508	0,3	82 361	82 008	(0,4)	
4	Mauricie	2 099	1 844	(12,1)	115 436	99 759	(13,6)	
5	Estrie	1 652	6 661	303,2	94 586	389 446	311,7	
6	Montréal	-	-	-	-	-	-	
7	Outaouais	1 360	2 668	96,2	78 531	152 981	94,8	
8	Abitibi-Témiscamingue	29 084	34 143	17,4	1 062 535	1 325 174	24,7	
9	Côte-Nord	17 012	20 890	22,8	858 021	1 059 546	23,5	
10	Nord-du-Québec	134 880	139 442	3,4	5 800 602	6 094 318	5,1	
11	Gaspésie–Îles-de-la-Madeleine	3 484	3 564	2,3	160 472	167 583	4,4	
12	Chaudière-Appalaches	1 841	6 277	241,0	85 776	333 223	288,5	
13	Laval	i-	-		S # S	. 	-	
14	Lanaudière	287	436	51,9	16 095	24 806	54,1	
15	Laurentides	1 782	1 901	6,7	98 131	106 384	8,4	
16	Montérégie	147	357	142,9	8 497	20 522	141,5	
17	Centre-du-Québec	266	1 022	284,2	15 678	60 429	285,4	
	Total	202 295	228 564	13,0	8 914 951	10 327 020	15,8	

Titres actifs au 31 décembre 2010 Superficie en UTM NAD 83

Région administrative		Nombre de titres	- Superficie(ha)	Nombre de titre
- КСБ	on autimistrative	(BEX, CM, BM, ASB, BEF, BEP)	Superficie(na)	(BNE)
1	Bas-Saint-Laurent	11	613	77
2	Saguenay-Lac-Saint-Jean	46	11 519	321
3	Capitale-Nationale	. 38	1 883	70
4	Mauricie	15	730	161
5	Estrie	5	256	15
6	Montréal	-	-	-
Z	Outaouais	8	246	120
8	Abitibi-Témiscamingue	191	17 065	675
9	Côte-Nord	212	31 000	526
10	Nord-du-Québec	117	11 019	469
11	Gaspésie-Îles-de-la-Madeleine	48	4 415	27
12	Chaudière-Appalaches	14	678	- 20
13	Laval	-	-	
14	Lanaudière	11	305	85
15	Laurentides	24	2 082	126
16	Montérégie	2	16	-
7	Centre-du-Québec	-	-	1
	Total	742	81 827	2 693

Titres actifs au 31 décembre 2010

TABLEAU 2.3 - Répartition des droits et des revenus de la gestion du sable et gravier par région administrative pour 2009-2010.

TABLEAU 2.3A - Répartition des droits et des revenus pour la gestion de l'exploitation du sable et du gravier en 2009-2010 pour les régions administratives sous la responsabilité du MRNF

	Sable et gravier				
Région administrative	Nombre de baux	Nombre d'autorisations	Redevances	Revenus en loyer	
Capitale-Nationale	95	6	538 972 \$	22 515 \$	
Mauricie	273	3	23 552 \$	55 831 \$	
Estrie	13	0	3 563 \$	1 195 \$	
Outaouais	122	0	35 915 \$	26 768 \$	
Abitibi-Témiscamingue	626	8	1 309 901 \$	128 214 \$	
Côte-Nord	400	6	443 770 \$	138 195 \$	
Nord-du-Québec	456	10	163 523 \$	82 747 \$	
Gaspésie–Îles-de-la-Madeleine	35	8	28 083 \$	9 227 \$	
Chaudière-Appalaches	16	3	1 407 \$	3 442 \$	
Montérégie	0	. 0	0\$	0\$	
Grand total:	2 036	44	2 548 686 \$	468 134 \$	

TABLEAU 2.3B - Répartition des droits et des revenus pour la gestion de l'exploitation du sable et du gravier en 2009-2010 pour les régions administratives sous délégation

	Sable et gravier				
Région administrative	Nombre de baux	Nombre d'autorisations	Redevances	Revenus en loyer	
Saguenay-Lac Saint-Jean	334	4	268 716 \$	68 593 \$	
Bas-Saint-Laurent	76	0	74 196 \$	13 388 \$	
Lanaudière	80	0	26 953 \$	16 491 \$	
Laurentides	106	1	28 708 \$	20 124 \$	
Grand total:	596	5	398 573 \$	118 596 \$	

CHAPITRE 3 - TRAVAUX GÉOSCIENTIFIQUES

Sylvain Lacroix, Patrice Roy, Charles Maurice, Jean-Yves Labbé

La Direction générale de Géologie Québec a pour mandat d'acquérir, de traiter et de diffuser des connaissances géoscientifiques sur les ressources minérales du Québec, dans le but d'évaluer et de promouvoir le potentiel minéral des différentes régions dans une perspective de développement durable. Grâce au Fonds du patrimoine minier mis en place à la suite du dévoilement de la Stratégie minérale, le Bureau de l'exploration géologique (BEGQ) dispose, en 2010-2011, d'un budget d'environ 12 M\$ pour la réalisation d'activités d'acquisition et de traitement des connaissances géoscientifiques (tableau 3.1). Une somme de 300 000 \$ a également été transférée au BEGQ en 2010-2011 par le ministère du Développement durable, de l'Environnement et des Parcs (MDDEP), afin de réaliser la cartographie des dépôts meubles du Quaternaire dans les secteurs ciblés par le Programme d'acquisition de connaissances sur les eaux souterraines du Québec municipalisé.

L'année 2010-2011 aura permis d'observer une accélération marquée du rythme d'acquisition de connaissances géoscientifiques sur le territoire québécois. La superficie couverte par les nouveaux inventaires, financés notamment grâce au Fonds du patrimoine minier, devrait atteindre près de 200 000 km². Les dix-huit projets d'acquisition et de traitement de connaissances géoscientifiques déjà réalisés ou à compléter d'ici la fin de l'année 2010-2011 sont présentés sur deux cartes illustrant les inventaires géologiques et ceux sur le Quaternaire (figure 3.1), et les inventaires géochimiques et géophysiques, en plus d'un projet d'évaluation du potentiel minéral (figure 3.2).

3.1 - Inventaires géologiques

Les six inventaires géologiques de la programmation géoscientifique 2010-2011 s'inscrivent dans le cadre d'un vaste programme d'acquisition de connaissances géoscientifiques multidisciplinaires qui a pour but de stimuler l'exploration dans le Nord québécois.

Le projet Churchill-Lac Raude (n° 1) situé à l'est de Schefferville représente la poursuite, vers l'est, d'un levé à l'échelle de 1/50 000 amorcé à l'été 2009. Ces deux levés fournissent ainsi une section géologique des terrains situés à l'est de l'Orogène du Nouveau-Québec. Rappelons que ce projet s'inscrit dans un programme géoscientifique multi-disciplinaire réalisé en collaboration avec la Commission géologique de Terre-Neuve-et-Labrador et la Commission géologique du Canada.

La région de la Baie-James continue d'être l'objet d'activités géoscientifiques intenses, deux nouveaux levés étant réalisés près du réservoir La Grande 3. Le projet Grand Nord

du lac Kinglet (n° 2) a poursuivi la cartographie à l'échelle de 1/250 000 de la région au sud du terrain archéen couvert lors du programme Grand Nord. Le projet Baie-James-Réservoir La Grande 3 (n° 3) a également poursuivi pour une deuxième année la couverture cartographique à l'échelle de 1/50 000 de la Sous-province de La Grande, au nord de la Sous-province d'Opinaca.

L'inventaire géologique situé dans la région du lac du Milieu (n° 4) consiste en un nouveau projet de cartographie à l'échelle de 1/50 000 des unités de paragneiss, de quartzite et d'amphibolite ceinturant le réservoir Manicouagan, dans la Province de Grenville.

Finalement, deux inventaires géologiques ont eu lieu dans les régions de Matagami (n° 5) et de Chapais (n° 6), afin de mieux connaître et comprendre la géologie des deux camps miniers et des régions avoisinantes. Ces deux projets sont complétés par diverses études ayant pour but de préciser la géométrie tridimensionnelle des unités fertiles en métaux usuels, en collaboration notamment avec l'Université du Québec en Abitibi-Témiscamingue et l'École Polytechnique de Montréal.

3.2 - Inventaires sur le Quaternaire

Le projet Octave (n° 7) consiste en une campagne d'échantillonnage par forage carottier de type sonique ayant pour objectif d'obtenir une meilleure connaissance de la stratigraphie des dépôts quaternaires et du socle rocheux dans une région au potentiel minéral élevé, mais recouverte d'importants dépôts quaternaires. La région visée en 2010 est située au cœur de la Sous-province de l'Abitibi, à 60 km au nord d'Amos et à 80 km à l'ouest de Lebel-sur-Quévillon, soit directement dans le prolongement vers l'ouest de projets semblables réalisés en 2006 et en 2007 dans le cadre du Plan cuivre.

Trois projets de cartographie à l'échelle de 1/50 000 des dépôts du Quaternaire ont ciblé respectivement les régions du Saguenay—Lac-Saint-Jean, du Centre-du-Québec et de Yamaska-Richelieu (n° 8, 9 et 10). Les levés du Saguenay—Lac-Saint-Jean et du Centre-du-Québec qui ont, en plus, pour but d'établir la stratigraphie et la distribution tridimensionnelle des formations géologiques superficielles cartographiées, en étaient à leur seconde et dernière année de travaux sur le terrain. Le levé de Yamaska-Richelieu en est à sa première année de terrain et devrait se poursuivre l'an prochain. Rappelons que ces projets sont effectués afin d'appuyer le Programme d'acquisition de connaissances sur les eaux souterraines du Québec du MDDEP dans le Québec méridional, à la suite d'une entente pluriannuelle signée à l'été 2009 avec le MDDEP.

3.3 - Inventaires géochimiques

La mise à jour des bases de données sur la géochimie des sédiments de fond de lac du Québec, amorcée en 2007, se poursuit en 2010-2011, avec deux nouveaux levés et deux projets de réanalyse.

Le projet n° 11 a consisté en un nouveau levé couvrant la Province de Grenville, le long d'une section nord-sud centrée sur la municipalité de Saguenay. Ce levé vient compléter la couverture géochimique en sédiments de fond de lac de la Province de Grenville, au nord de la latitude 47°22'30".

Les projets n°s 12 et 13 ont tous deux été réalisés en collaboration avec la Corporation de promotion du développement minéral de la Côte-Nord (CPDM). Le projet n° 12 a consisté en deux levés de sédiments de fond de lac dans des secteurs situés au nord de Havre-Saint-Pierre et à l'ouest du réservoir Manicouagan. Le projet n° 13 consiste en une réanalyse géochimique d'échantillons du levé de Fermont recueillis en 1987.

Le projet n° 14 représente une vaste campagne de réanalyse géochimique des sédiments de fond de lac recueillis entre 1973 et 1978 par la Société de développement de la Baie-James (SDBJ) dans la région de la Baie-James, et dont les résultats ont été rendus publics à Québec Exploration 2010.

3.4 - Inventaires géophysiques

Le territoire de la Baie-James a continué, en 2010-2011, d'être l'objet de vastes levés géophysiques aéroportés qui ont pour but de fournir notamment, à terme, une couverture aéromagnétique semblable à celle déjà disponible pour la Sousprovince de l'Abitibi. Un levé magnétique et spectrométrique (projet n° 15) a couvert la portion sud de la Sous-province d'Opinaca, pour faire suite au levé géophysique de l'année précédente qui avait couvert le secteur situé directement au nord. Un vaste levé aéromagnétique (projet n° 16) a pour but d'étendre beaucoup plus au sud et vers l'ouest la couverture géophysique déjà réalisée depuis 2007 dans le secteur des dépôts Éléonore (or), Renard (diamant) et Coulon (zinc).

Par ailleurs, la Commission géologique du Canada a réalisé au début de 2010 un levé aéromagnétique (projet n° 17) à l'ouest de Kuujjuaq dans le cadre du projet GEM (Géocartographie de l'énergie et des minéraux). Ce levé, effectué à la demande de Géologie Québec, a pour but d'appuyer les prochains levés géologiques sur le terrain à l'échelle de 1/250 000 qui doivent débuter dès l'été 2011 dans ce secteur.

3.5 - Publications

En 2010, le MRNF a publié 97 documents originaux, dont 18 cartes géologiques, 9 traductions en anglais et 3 rapports publiés en langue anglaise, tous disponibles dans la banque de données publiques (SIGÉOM). En plus des cartes géologiques, les documents incluent des levés géoscientifiques, des études, des compilations géologiques et des documents de promotion ou de vulgarisation réalisés par le MRNF ou ses partenaires.

Les feuillets SNRC des régions couvertes par des nouvelles cartes sont indiqués à la figure 3.3. Les cartes géologiques (10) accompagnées de rapports (3), les compilations géologiques (2) des régions de Matagami et de la rivière Bigniba, les cartes couvertes par les levés géophysiques régionaux (10) et les levés ou les réanalyses de géochimie de l'environnement secondaire (disponibles dans SIGÉOM à la carte), sont positionnés à la figure 3.3. Les documents de promotion (3), les affiches grand public (5), les études et documents de synthèse (45), et les compilations à petite échelle (2) ne sont pas localisés sur la carte mais sont disponibles dans SIGÉOM examine.

Finalement, 691 rapports de travaux statutaires ont été versés dans la base de données SIGÉOM. Les feuillets SNRC des régions couvertes par ces travaux sont indiqués à la figure 3.3.

()

()

3.6 - Cibles d'exploration

L'acquisition et le traitement des nouvelles données géoscientifiques recueillies en 2010 ont permis d'identifier 91 nouvelles cibles d'exploration qui ont été dévoilées lors de Ouébec Exploration 2010 (PRO 2010-05). La plupart de ces cibles se trouvent dans la région Nord-du-Québec et concernent diverses substances, notamment l'or, le cuivre, l'uranium et les métaux rares. Aussi, quelques cibles ont été identifiées en Abitibi-Témiscamingue pour les kimberlites et sur la Côte-Nord, principalement pour les minéraux industriels et la pierre architecturale. De plus, l'actualisation et le retraitement de la base de données sur la géochimie de l'environnement secondaire du territoire québécois, récemment bonifiée grâce à la réanalyse de quelque 27 000 échantillons de sédiments de fond de lac dans la région de la Baie-James, a permis d'identifier près de 3 000 cibles additionelles. Toutes ces cibles sont positionnées à la fois sur GESTIM et sur le site Web du MRNF:

http://www.mrnf.gouv.qc.ca/mines/publications/publications-promotion.jsp

http://www.mrnf.gouv.qc.ca/mines/publications/publications-cartes.jsp

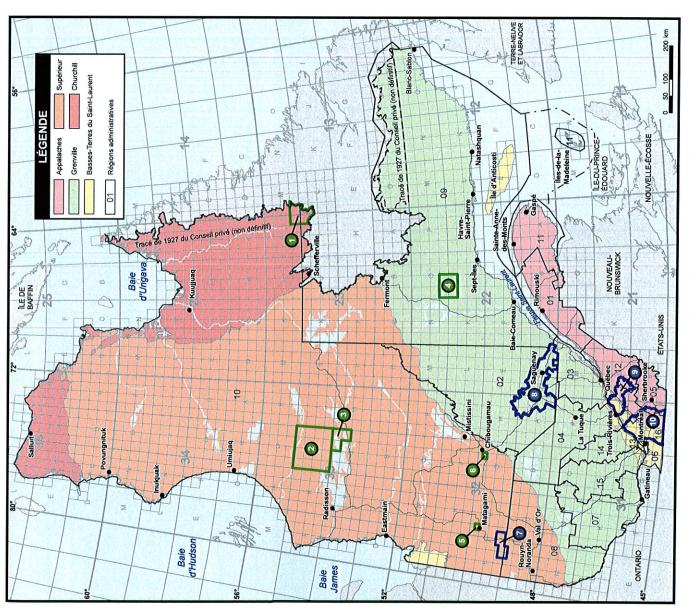


Figure 3.1. Inventaires géologiques et sur le Quaternaire.

géoscientifique 2010-2011 **Programmation**

INVENTAIRES GÉOLOGIQUES

- Projet Churchill Lac Raude
- Projet Grand-Nord Lac Kinglet
- 3 Projet Baie-James Réservoir La Grande 3
 - Projet Grenville Lac du Milieu
- Projet Matagami
- Projet Chapais

INVENTAIRES SUR LE QUATERNAIRE

- Projet Octave (roc et quaternaire)
- 8 Projet Saguenay-Lac-St-Jean (MDDEP-MRNF)
 - 9 Projet Centre-du-Québec (MDDEP-MRNF)

 10 Projet Yamaska-Richelieu (MDDEP-MRNF)

Septembre 2010

Réalisation:

Note : Le présent document n'a aucune portée légale. © Couvernement du Québec, septembre 2010 Ministère des Ressources naturelles et de la Faune Direction de l'information géologique du Québec

Figure 3.2. Inventaires géochimiques et géophysiques.

Programmation géoscientifique 2010-2011

INVENTAIRES GÉOCHIMIQUES

Levé de sédiments de fond de lac Saguenay-Lac-St-Jean Levé de sédiments de fond de lac Côte-Nord

Réanalyse de sédiments de fond de lac

Côte-Nord (4) Réanalyse de sédiments de fond de lac Baie-James

INVENTAIRES GÉOPHYSIQUES

▲ Levé magnétique et spectrométrique aéroporté -Baie-James

16 Levé magnétique aéroporté - Baie-James

T Levé magnétique aéroporté - Kuujjuaq

Évaluation de potentiel en minéralisation de type sulfures massifs volcanogènes (SMV) pour l'Abitibi

INÉRAL

ÉVALUATION DE POTENTIEL M

Octobre 2010

Réalisation:

Ministère des Ressources naturelles et de la Faune Direction de l'information géologique du Québec Note : Le présent document n'a aucune portée légale. © Couvernement du Québec, septembre 2010

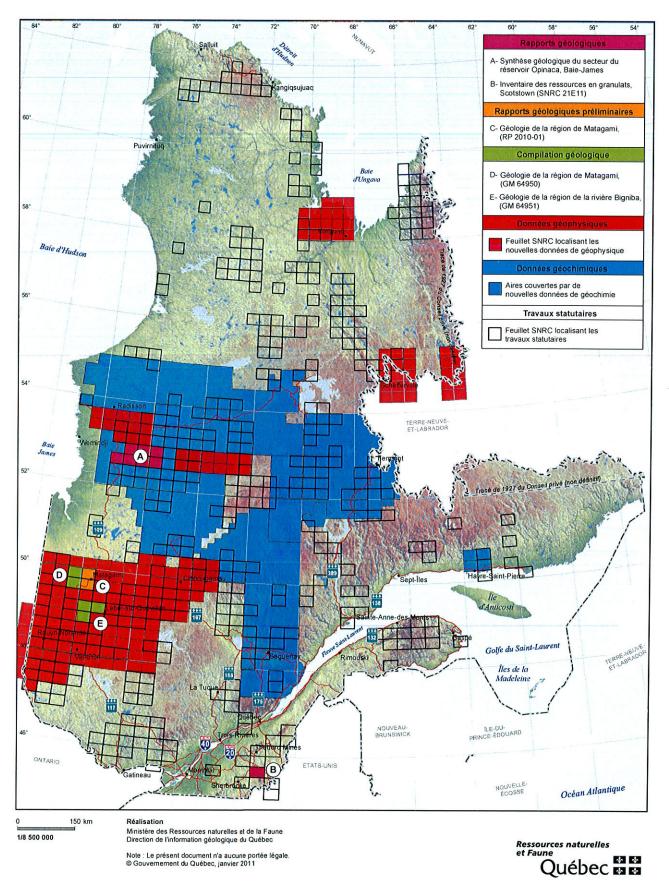


Figure 3.3. Nouvelles publications géoscientifiques en 2010.

TABLEAU 3.1 - Répartition par région administrative des dépenses en travaux d'acquisition de connaissances géoscientifiques effectués par le Ministère des Ressources naturelles et de la Faune du Québec.

Régio	on administrative	Dépenses en 2008-2009 (en 000 \$)	Dépenses en 2009-2010 (en 000 \$)	Dépenses en 2010-2011 (en 000 \$)p
1	Bas-Saint-Laurent	770,0	28,8	0,0
2	Saguenay-Lac-Saint-Jean	472,9	0,0	846,8
3	Capitale-Nationale	610,6	314,3	239,8
4	Mauricie	242,7	201,2	1,0
5	Estrie	0,0	58,7	12,1
6	Montréal	0,0	0,0	0,0
7	Outaouais	54,8	58,3	0,0
8	Abitibi-Témiscamingue	1 499,3	941,5	681,8
9	Côte-Nord	825,0	1 722,7	1 623,4
10	Nord-du-Québec	5 391,8	4 168,1	8 206,8
11	Gaspésie–Îles-de-la-Madeleine	121,2	47,5	0,0
12	Chaudière-Appalaches	0,0	0,0	40,1
13	Laval	0,0	0,0	0,0
14	Lanaudière	3,6	0,0	0,0
15	Laurentides	9,4	0,0	0,0
16	Montérégie	0,0	65,3	273,8
17	Centre-du-Québec	0,0	46,5	31,5
	Total	10 001,3	7 652,8	11 957,1
		ACTIVITY OF THE PARTY OF THE PA	ar www.com/2019 18 640	

p : Données préliminaires

CHAPITRE 4 - EXPLORATION MINIÈRE

4.1 - Introduction

Martin Labrecque et James Moorhead

Ce chapitre regroupe, principalement sous forme de tableaux et de figures, l'information sur les substances recherchées, les dépenses d'exploration, la localisation et la description des projets d'exploration et de mise en valeur effectués au Québec en 2010. Les activités des compagnies d'exploration à la recherche de métaux et de minéraux industriels sont rapportées dans ce chapitre. L'information a été colligée à partir des rapports publiés sur Internet (communiqués de presse, rapports publics, etc.), recueillie à partir de formulaires que les compagnies nous ont transmis ou recensée par l'Institut de la statistique du Québec dans le cadre du Programme de statistiques minières.

SUBSTANCES RECHERCHÉES

Selon les données de 2009 compilées par l'ISQ, près de 270 sociétés minières ont déclaré des travaux d'exploration ou de mise en valeur au Québec en tant que gérant de projets, ce qui représente 130 M\$ pour les sociétés majeures, 246 M\$ pour les sociétés juniors et 3 M\$ pour les sociétés publiques. La répartition des sièges sociaux des sociétés juniors actives au Québec s'établit ainsi : 41 % sont localisés au Québec, 33 % se trouvent en Colombie-Britannique, 22 % sont situés en Ontario et 4 % sont établis ailleurs au Canada ou à l'extérieur du pays.

En 2009, les activités d'exploration et de mise en valeur ont principalement visé les métaux précieux (tableau 4.1), surtout I'or (231 M\$, 61 %), les métaux usuels (59 M\$, 16 %), l'uranium (48 M\$, 13 %), les métaux ferreux (15 M\$, 4 %) et le diamant (10 M\$, 3 %). Lors du dernier cycle haussier, les activités d'exploration pour l'uranium et les métaux ferreux ont connu une augmentation spectaculaire. En effet, les dépenses d'exploration pour l'uranium sont passées de 1,4 M\$ en 2004 à 48 M\$ en 2009 tandis que les dépenses d'exploration pour les métaux ferreux sont passées de 0,3 M\$ à 15 M\$ sur la même période. L'exploration pour certaines substances que le Québec ne produit pas à l'heure actuelle a aussi commencé à apparaître, particulièrement pour les éléments des terres rares (ÉTR) et le lithium. L'utilité de ces substances, notamment dans les produits de haute technologie et les piles rechargeables, jumelée à une demande croissante et à des craintes quant à l'approvisionnement, expliquent cet intérêt croissant.

DÉPENSES POUR DES ACTIVITÉS D'EXPLORATION ET DE MISE EN VALEUR

En 2009, les travaux d'exploration et de mise en valeur ont totalisé des dépenses de 379,3 M\$ (tableau 4.2). Ils se sont déroulés principalement dans trois régions administratives du Québec : l'Abitibi-Témiscamingue (166,4 M\$, 43,9 %), le

Nord-du-Québec (184,8 M\$, 48,7 %) et la Côte-Nord (13,5 M\$, 3,6 %). Comparativement à l'année 2008, en raison de la crise économique mondiale, il y a eu en 2009 une diminution des travaux et des dépenses pour l'exploration et la mise en valeur dans l'ensemble du Québec.

En 2010, les intentions révisées de dépenses pour les activités d'exploration et de mise en valeur sont en hausse et atteignent 576 M\$, en raison de la reprise de la demande de produits miniers et de la hausse des prix. Au 31 décembre 2010, le nombre de titres miniers actifs s'établissait à 228 564, ce qui représente une hausse de 13 % par rapport au 31 décembre 2009.

EMPLOIS DANS LE DOMAINE DE L'EXPLORATION MINIÈRE

Les données sur le nombre de travailleurs liés aux activités d'exploration minière ne sont pas comptabilisées dans le cadre du Programme de statistiques minières. Ainsi, à partir de l'information fournie par les sociétés sur leurs dépenses en exploration, le ministère des Ressources naturelles et de la Faune (MRNF) estime que les activités d'exploration et de mise en valeur hors d'un site minier créent plus de 2 000 emplois directs et plus de 1 500 emplois indirects répartis un peu partout au Québec.¹

4.2 - Nord-du-Québec (région 10)

Patrick Houle, James Moorhead, Suzanne Côté

Cette section présente un aperçu des travaux d'exploration réalisés dans la région Nord-du-Québec. Le tableau 4.3 présente une description des projets d'exploration et de développement minier dans les provinces géologiques du Supérieur, incluant la partie nord de la Sous-province de l'Abitibi, et de Churchill pour lesquels des travaux ont été réalisés en 2010. Les figures 4.1, 4.2 et 4.3 illustrent l'emplacement de ces projets.

Au 31 décembre 2010, il y avait 139 442 titres d'exploration actifs dans la région Nord-du-Québec comparativement à 134 880 titres d'exploration actifs au 31 décembre 2009, soit une hausse de 3,4 % (tableau 2.1). Pour la région, on dénombrait 204 projets d'exploration en 2010, comparativement à 140 projets en 2009. Cette augmentation significative est principalement due à un accroissement des projets pour la recherche de métaux précieux et usuels dans la Sous-province de l'Abitibi.

En 2010, dans la région Nord-du-Québec, le nombre de mines métalliques se situe à quatre, soit deux mines d'or (Casa Berardi (Au), Mines Aurizon; Géant Dormant (Au), North American Palladium) et deux mines polymétalliques

¹⁻ Source : Données estimées à partir du Modèle intersectoriel du Québec de l'Institut de la statistique du Québec, octobre 2010.

(Persévérance (Zn-Cu-Ag-Au), Xstrata Canada; Raglan (Cu-Ni-Co-ÉGP), Xstrata Canada). En cours d'année, quelques projets avancés d'exploration ont débuté leur mise en valeur, dont le projet Bracemac-McLeod (Zn-Cu-Ag-Au) de Xstata Canada, le projet Éléonore (Au) par Les Mines Opinaca (Goldcorp) et le projet Nunavik Nickel (Cu-Ni-Co-ÉGP) de la Société minière Jien Canada, auxquels il faut ajouter le développement de l'ancienne mine Langlois (Zn-Cu-Ag-Au) de Ressources Breakwater.

PROVINCE DU SUPÉRIEUR

Dans la région Nord-du-Québec, la Province du Supérieur s'étend sur tout le territoire de la Baie-James et dans la partie sud-est du Nunavik. Elle englobe six sous-provinces géologiques, soit, du nord au sud, les sous-provinces de Minto, de La Grande, d'Opinaca, de Nemiscau, d'Opatica et de l'Abitibi. Constituées d'ensembles volcanoplutoniques et sédimentaires, ces sous-provinces sont découpées par de nombreux cisaillements allant de E-W à WNW-ESE et NE-SW. Les ensembles volcaniques sont métamorphisés au faciès des schistes verts au centre, jusqu'au faciès supérieur des amphibolites près de leurs contacts. Ces assemblages sont recoupés par de nombreuses intrusions granitiques appartenant à diverses suites plutoniques (Moukhsil et al., 2003). Quant aux assemblages sédimentaires, ils sont affectés par un métamorphisme variant du faciès des amphibolites aux granulites.

Au sud du territoire de la Baie-James, dans la Sous-province de l'Abitibi, les camps miniers de Chapais-Chibougamau et de Matagami ont continué de susciter un vif intérêt pour la recherche de métaux précieux et usuels, auxquels s'ajoutent le fer, le vanadium et le titane. Par ailleurs, dans la région de Lebelsur-Quévillon-Desmaraisville, les projets d'exploration ont été principalement réalisés pour la recherche de l'or. Enfin, dans le Moyen Nord et le Grand Nord, les travaux de surface ont permis de mettre au jour plusieurs nouveaux indices importants d'or, de métaux usuels, d'uranium, de lithium et de métaux rares. De plus, à la Baie-James, la réanalyse des sédiments de fond de lac, la récente cartographie du secteur LG-4 et l'interprétation de nouveaux levés géophysiques aéroportés par Géologie Québec ont permis de générer de nouvelles cibles d'exploration (réf. : PRO 2010-03 et PRO 2010-05).

PROVINCE DE CHURCHILL

La Province de Churchill se trouve dans la partie nord-est du Nunavik. Elle est formée principalement des roches paléoprotérozoïques des orogènes du Nouveau-Québec (Fosse du Labrador), des Torngat et de l'Ungava (Ceinture de Cap Smith) ainsi que de leur arrière-pays (zone Noyau, formée en grande partie de roches archéennes [James et al., 1996; Wardle et al., 2002]).

Les principales substances recherchées dans l'Orogène du Nouveau-Québec, l'Orogène des Torngat et la zone Noyau sont l'uranium, le fer, le cuivre, l'or, le diamant et les éléments des terres rares. La Ceinture de Cap Smith (Orogène ou Fosse de l'Ungava) a continué de susciter un vif intérêt auprès des compagnies d'exploration à la recherche de nickel, de cuivre, de cobalt et d'éléments du groupe du platine (ÉGP).

L'Orogène du Nouveau-Québec

Appelé également la Fosse du Labrador au Québec, ou « la Fosse », l'Orogène du Nouveau-Québec, dont l'âge s'étale de 2,17 à 1,79 Ga, forme une ceinture de chevauchement et de plissement en marge de la Province du Supérieur. La Fosse se compose de roches qui comprennent deux cycles volcanosé-dimentaires et un troisième cycle constitué de roches métasé-dimentaires (Clark et Wares, 2004).

L'Orogène des Torngat et la zone Noyau

D'âge paléoprotérozoïque, l'Orogène des Torngat est limité à l'est, par les roches archéennes de la Province de Nain puis à l'ouest, par les roches archéennes et paléoprotérozoïques de la zone Noyau. Cet orogène est divisé en domaines et complexes lithotectoniques séparés par des zones de cisaillement ductile.

Située dans le sud-est de la Province géologique de Churchill, la zone Noyau (anciennement connue comme la Province de Rae) est comprise entre l'arrière-pays de la Fosse du Labrador et l'avant-pays de l'Orogène des Torngat. Elle est constituée, en grande partie, de gneiss d'âge archéen et de lambeaux de roches supracrustales paléoprotérozoïques. Ces roches ont été subséquemment déformées et métamorphisées au Paléoprotérozoïque. La zone Noyau est divisée en plusieurs domaines lithotectoniques séparés par de grands corridors de déformation (Wardle et al., 2002).

L'Orogène de l'Ungava

L'Orogène de l'Ungava (Fosse de l'Ungava ou Ceinture de Cap Smith) est composé d'une ceinture paléoprotérozoïque de roches volcanosédimentaires qui s'étire sur 370 km en direction ENE. La région se divise en quatre unités tectoniques principales : a) le socle autochtone archéen de la Province du Supérieur; b) la ceinture d'accrétion allochtone ou Fosse de l'Ungava; c) le Terrane de Narsajuaq, d'âge paléoprotérozoïque; et d) le socle archéen parautochtone (Lamothe, 1994).

PERSPECTIVES D'EXPLORATION

Dans la région Nord-du-Québec, la Sous-province de l'Abitibi, située entre le 49° et le 50° parallèle, est reconnue pour la présence des camps miniers de Chapais-Chibougamau et Matagami, riches en dépôts de métaux précieux (Au-Ag) et polymétalliques (Cu-Zn-Au-Ag et Cu-Au). Toutefois, à l'extérieur de ces camps, très peu de travaux d'exploration ont été réalisés. Par exemple, le potentiel minéral en métaux précieux associés à des cisaillements principaux et subsidiaires, injectés de dykes porphyriques felsiques, demeure à vérifier.

À la Baie-James, les récents efforts de cartographie du MRNF dans les sous-provinces d'Opinaca et de La Grande, auxquels s'ajoute une nouvelle couverture géophysique aéroportée, ont défini de nouvelles cibles aurifères, polymétalliques, diamantifères et uranifères.

En 2010, les travaux d'exploration se sont accrus pour la recherche du lithium (Li) et les éléments des terres rares (ÉTR), principalement dans la partie centrale du territoire de la Baie-James, la Fosse du Labrador et la Province de Rae. Ainsi, à la Baie-James, trois projets ont fait l'objet d'une première évaluation de ressources pour des minéralisations de Li dans des pegmatites granitiques associées aux complexes monzogranitiques peralumineux autour des ceintures volcanosédimentaires : le projet James Bay Lithium de Lithium One, le projet Whabouchi d'Exploration Nemaska et le projet Lac Pivert/Rose d'Exploration First Gold Près de la rivière George dans la Fosse du Labrador, la découverte de nouvelles zones en éléments des terres rares par la coentreprise Exploration Midland et Japan Oil, Gas and Metals Corporation, jumelée à l'annonce de ressources présumées dans la zone-B du projet Strange Lake par Quest Rare Minerals ont mis en évidence une nouvelle région à fort potentiel pour la recherche d'éléments des terres rares,

4.3 - Abitibi-Témiscamingue (région 08)

Pierre Doucet, James Moorhead, Denis Lesage, Suzanne Côté

La région administrative de l'Abitibi-Témiscamingue est située dans la partie occidentale du Québec et comprend trois grands ensembles géologiques, qui sont du nord vers le sud; les sous-provinces de l'Abitibi et du Pontiac (Province du Supérieur) et la Province de Grenville.

Les sous-provinces de l'Abitibi et du Pontiac occupent la partie méridionale de la Province du Supérieur au Québec. La Sous-province de l'Abitibi est la plus grande, l'une des mieux connues et l'une des plus riches ceintures de roches vertes archéennes au monde. Elle est formée d'intrusions de granitoïdes ainsi que de bandes volcaniques et sédimentaires qui sont orientées E-W (figure 4.4) et dont l'âge varie entre 2,75 et 2,67 Ma. La Ceinture de l'Abitibi est découpée par plusieurs failles E-W ou NW-SE, généralement inverses, ainsi que par des failles NE senestres et SE dextres.

La Sous-province du Pontiac est séparée de la Sous-province de l'Abitibi par la Zone tectonique de Cadillac, structure hôte de nombreux dépôts aurifères. Le Pontiac comprend des intrusions de granitoïdes et d'orthogneiss dans sa partie centrale, des roches sédimentaires détritiques et des paragneiss, et quelques séquences de roches volcaniques. Ces dernières forment des assemblages ultramafiques, mafiques et felsiques dans la partie sud-ouest de la sous-province. Quelques minces bandes de roches volcaniques mafiques à ultramafiques sont présentes dans sa partie nord.

La Province du Grenville est séparée des sous-provinces du Pontiac et de l'Abitibi par le Front de Grenville, une zone tectonique orientée vers le NE, caractérisée par une augmentation importante du métamorphisme vers le SE. Le Grenville est composé d'orthogneiss, de roches intrusives, de métasédiments et de migmatites d'âge archéen et protérozoïque.

La Sous-province de l'Abitibi est reconnue pour le grand nombre et la richesse de ses mines de métaux précieux (Au-Ag) et polymétalliques (Cu-Zn-Au-Ag et Cu-Au). Quelques gisements métalliques et des carrières de pierre architecturale et de minéraux industriels, tels que la chaux, le quartz, la kyanite, le mica et le grenat, ont aussi été exploités dans la Sous-province du Pontiac. L'exploitation et l'exploration font de ce territoire l'une des principales régions minières du Québec depuis maintenant près d'un siècle.

Le tableau 4.4 présente une description des projets d'exploration et de mise en valeur dans les sous-provinces de l'Abitibi et du Pontiac et dans la partie occidentale de la Province de Grenville. Les figures 4.4, 4.5 et 4.6 illustrent l'emplacement de ces projets.

En 2010, pour la région de l'Abitibi-Témiscamingue, le nombre de mines métalliques se situe à huit, soit sept mines d'or : Kiena [Au-Ag] Mines d'Or Wesdome, Lac Herbin [Au-Ag] Corporation minière Alexis, Beaufor [Au-Ag] Mines Richmont, Mouska [Au-Cu-Ag] Gestion IAMGOLD-Québec, Goldex [Au-Ag] Mines Agnico-Eagle, Lapa [Au-Ag] Mines Agnico-Eagle et Barry [Au-Ag] Ressources Métanor) et une mine polymétallique (LaRonde [Au-Zn-Cu-Ag-Pb] Mines Agnico-Eagle). Plusieurs projets d'exploration d'envergure sont situés dans ces mines ou à proximité de celles-ci.

Au 31 décembre 2010, il y avait 34 143 titres d'exploration actifs en Abitibi-Témiscamingue, ce qui représente une augmentation de 17,4 % par rapport à 2009 (tableau 2.1). En 2010, le nombre de projets d'exploration se situe à 186, comparativement à 117 en 2009, ce qui représente une augmentation de 63%. La majorité de ceux-ci ciblent les minéralisations aurifères et se situent le long des grandes cassures tectoniques telles les failles Porcupine-Destor et Cadillac. L'exploration pour les métaux de terres rares a pris de l'ampleur dans le secteur de Kipawa, au Témiscamingue au cours de l'année. Les travaux sur des gîtes et des indices de lithium connus dans la région de Preissac-La Corne se sont poursuivis tout au long de 2010, en marge des travaux de développement avancés sur le gîte Québec Lithium par la société Canada Lithium Corp.

4.4 - Les régions du Québec à l'exception de l'Abitibi-Témiscamingue (région 08) et du Nord-du-Québec (région 10)

Suzie Nantel, Steve Ouellet, Louis Madore, Pierre Doucet et Denis Lesage

Cette section du document traite de l'ensemble des régions administratives du Québec à l'exception de l'Abitibi-Témiscamingue (08) et du Nord-du-Québec (10). La majeure partie de ce territoire est couverte par trois provinces géologiques: Grenville, Appalaches et Plate-forme du Saint-Laurent (figure 4.7).

Les régions administratives de l'Outaouais (07), des Laurentides (15), de la Mauricie (04), du Saguenay-Lac-Saint-Jean (02) et de la Côte-Nord (09) ainsi qu'une partie des régions de Lanaudière (14) et de la Capitale-Nationale (03) sont principalement localisées dans la Province de Grenville (figure 4.7). Cette province géologique est constituée surtout d'orthogneiss, de roches intrusives, de roches métasédimentaires et de migmatites, d'âge archéen et protérozoïque, qui ont été affectés par plusieurs événements tectoniques et magmatiques à partir de l'orogenèse labradorienne (1710 à 1600 Ma) jusqu'à l'orogenèse grenvillienne (1090 à 980 Ma). La Province de Grenville est favorable à la recherche de cuivre, de nickel, de platine, de palladium, de zinc, d'uranium, de fer, d'oxyde de titane, de niobium, de tantale et d'éléments des terres rares (ÉTR) ainsi que de minéraux industriels (apatite, graphite, mica, quartz) et de granite architectural.

Les régions administratives de l'Estrie (05), du Bas-Saint-Laurent (01) et de la Gaspésie-Îles-de-la-Madeleine (11) ainsi qu'une partie des régions de la Montérégie (16), de Chaudière-Appalaches (12) et du Centre-du-Québec (17) sont surtout localisées dans la Province des Appalaches (figure 4.7). Cette dernière est formée de roches sédimentaires, de volcanites et d'intrusions, d'âge phanérozoïque, mises en place et déformées lors des orogenèses taconienne (460 à 440 Ma), acadienne (410 à 380 Ma) et alléghanienne (320 à 220 Ma), les effets de cette dernière se situant essentiellement dans le centre-est et le sud-est des États-Unis. Les compagnies d'exploration sont attirées dans la province géologique des Appalaches pour son potentiel en cuivre, en zinc, en argent, en or, en chrome ainsi qu'en argile alumineuse et en hydrocarbures. Quant aux compagnies d'exploitation, elles mettent en valeur depuis longtemps ses ressources en minéraux industriels (chrysotile, tale, quartz, halite, argile), en matériaux de construction, en granulats, en pierre architecturale ainsi qu'en gaz naturel, en saumure et en tourbe.

Enfin, les régions administratives de Montréal (06) et de Laval (13) ainsi qu'une partie des régions du Centre-du-Québec (17), de Lanaudière (14), de la Mauricie (04) et de la Capitale-Nationale (03) appartiennent à la province géologique de la

Plate-forme du Saint-Laurent (figure 4.7). Cette province est formée de calcaire et de grès, non déformés, qui se sont déposés au cours du Cambrien (544 à 500 Ma) et de l'Ordovicien (500 à 440 Ma). Elle est surtout caractérisée par ses ressources en pierres industrielles et de construction (calcaire, dolomie, grès) et par son potentiel en gaz naturel.

Les activités des compagnies d'exploration à la recherche de métaux, de minéraux industriels et de pierres industrielles sont rapportées dans cette section (tableau 4.5, figure 4.7). En 2010, la plupart des régions administratives ont été le site de travaux-d'exploration-pour de telles-ressources. Les activités d'exploration pour le gaz et le pétrole, nombreuses dans les provinces géologiques de la Plate-forme du Saint-Laurent et des Appalaches, ne sont pas abordées dans le présent rapport.

RÉGIONS ADMINISTRATIVES DES PROVINCES DE GRENVILLE ET DU SUPÉRIEUR : OUTAOUAIS (07), LAURENTIDES (15), LANAUDIÈRE (14), MAURICIE (04), CAPITALE-NATIONALE (03), SAGUENAY-LAC-SAINT-JEAN (02) ET CÔTE-NORD (09)

En 2010, cinq compagnies d'exploration minière étaient actives dans la région de l'Outaouais. Leurs travaux d'exploration étaient axés sur la recherche de cuivre, de zinc ou d'ÉTR (tableau 4.5). Les investissements les plus importants ont été effectués par Ressources Cartier et Exploration Midland La compagnie Stelmine Canada a annoncé qu'elle abandonnait sa propriété Gatineau Bloc 1 à la suite de ses travaux effectués en 2010, mais qu'elle conservait sa propriété Gatineau Bloc 2 (tableau 4.5). Le plus grand nombre de claims inscrits en 2010 l'a été dans la partie nord de la région par Ressources Cartier à la recherche de cuivre. Cette inscription explique en grande partie l'augmentation de 96,2 % du nombre de claims par rapport à 2009, en Outaouais (tableau 2.1). Plusieurs nouveaux claims ont aussi été inscrits dans la MRC des Collines-de-l'Outaouais, une région favorable à la présence d'ÉTR.

Dans la région des Laurentides, l'exploration pour le cuivre-nickel s'est poursuivie en 2010 tandis qu'une nouvelle propriété a été explorée pour les ÉTR (tableau 4.5). Plusieurs compagnies impliquées dans l'exploration d'uranium et de minéralisations en fer-cuivre-or de type IOCG (*Iron oxyde-Copper-Gold*) ont abandonné en tout ou en partie leurs claims tandis que d'autres compagnies en ont inscrits de nouveaux pour la recherche des substances suivantes : ÉTR, dans la partie nord de la MRC Antoine-Labelle; tourbe, à l'est et au nord-ouest de Sainte-Anne-du-Lac; graphite, au nord et au sud du bail minier de la mine de graphite à Saint-Aimé-du-Lac-des-Îles. La variation du nombre de claims par rapport à 2009 a été de 6,7 % (tableau 2.1).

Dans Lanaudière, près de Joliette, **Graymont (QC)** a effectué quatre forages dans des unités de calcaire de la Formation de Deschambault. Ces travaux de forage ont permis de découvrir l'importance de l'épaisseur du mort-terrain.

En Mauricie, les travaux d'exploration pour l'or et les métaux usuels se poursuivent à l'ancienne mine de Montauban. Des travaux d'exploration pour les ÉTR sont aussi en cours dans le secteur du lac Baude, à environ 25 kilomètres au nord du Parc national de la Mauricie.

Dans la région de la Capitale-Nationale, la principale activité minière touche la mise en valeur de la pierre architecturale dans la MRC de Portneuf. Dans le secteur du petit lac Malbaie (Charlevoix), des travaux de décapage effectués par Silicium Québec ont permis la découverte d'une lentille de quartzite. Sinon, très peu de travaux d'exploration minière ont été effectués dans cette région au cours de l'année 2010.

Au Saguenay—Lac-Saint-Jean, plusieurs projets d'exploration pour des minéraux industriels et stratégiques se poursuivent. Il s'agit notamment de travaux d'exploration pour le phosphore, effectués au nord du réservoir Pipmuacan. On note aussi, au nord du lac Saint-Jean, des travaux d'exploration sur un gîte de tantale et niobium. Un projet d'exploration pour les ÉTR et le niobium se poursuit dans le secteur de Saint-Honoré tandis qu'un ancien gîte de fer et titane localisé dans le secteur de Saint-Charles sur la rive nord du Saguenay est réévalué pour son potentiel en ÉTR et en vanadium. Enfin, des travaux ont été effectués sur un indice d'or découvert en 2009 et localisé à une trentaine de kilomètres au sud-est de Chibougamau.

Dans la région de la Côte-Nord, l'exploration en 2010 était essentiellement centrée sur le fer dans le secteur de Fermont et sur l'uranium au nord et au nord-est de Havre-Saint-Pierre. Également, les recherches pour les ÉTR se sont poursuivies dans les secteurs au nord-ouest de Sept-Îles et à l'est de Natashquan.

RÉGIONS ADMINISTRATIVES DE LA PROVINCE DES APPALACHES: ESTRIE (05), CENTRE-DU-QUÉBEC (17), CHAUDIÈRE-APPALACHES (12), BAS-SAINT-LAURENT (01) ET GASPÉSIE-ÎLES-DE-LA-MADELEINE (11)

En Estrie, le nombre total de claims est passé de 1652 à 6661 en un an, ce qui correspond à une augmentation de 303,2 % (tableau 2.1). La majorité des claims ont été octroyés à **Bowmore Exploration** et à **Fancamp Exploration** ainsi qu'à

Ressources de la Baie d'Uragold et à Bertrand Brassard. Ces deux derniers n'ont pas rapporté de travaux en 2010. La compagnie Bowmore se concentre dans la recherche de gisements d'or à faible teneur et à fort tonnage, exploitables à ciel ouvert, dans des roches sédimentaires. Elle a effectué un levé géophysique aérien de 2410 km au-dessus de ses propriétés. Pour sa part, Fancamp a survolé 13 800 km dans le cadre d'un levé géophysique électromagnétique (VTEM) sur sa propriété Quebec Appalachian Group, laquelle comprend l'ensemble de ses propriétés localisées dans les régions de l'Estrie et de Chaudière-Appalaches. Elle cible des gisements de type sulfures massifs volcanogènes (cuivre-zinc-or), skarn (cuivre-molybdène) et SEDEX (zinc) ainsi que des gisements d'or syngénétique et des gisements de nickel-cuivre-éléments du groupe du platine. Par ailleurs, Western Troy Capital Resources a annoncé qu'elle a mis fin à son programme de forage entrepris en 2010 et qu'elle ne planifiait aucun nouveau programme d'exploration. Enfin, le Centre de Granit Beebe a procédé à l'extraction de blocs de granite dans le secteur de Stanstead dans le but de faire des tests sur la qualité de la pierre.

En Chaudière-Appalaches et au Centre-du-Québec, on observe une augmentation du nombre de titres miniers de 1841 à 6277 (tableau 2.1), une recrudescence de l'activité d'exploration minière comparable à ce qui se produit en Estrie. Les travaux d'exploration, principalement pour l'or, se font surtout dans les roches sédimentaires des Appalaches, le long de la ligne Baie Verte-Brompton. Des paléoplacers aurifères font aussi l'objet de travaux d'exploration.

Dans le Bas-Saint-Laurent, des activités d'exploration ont débuté pour trouver de nouveaux bancs d'ardoise exploitables.

En Gaspésie, les métaux usuels et précieux ont fait l'objet de travaux d'exploration dans le secteur du Dôme Lemieux et à proximité de l'ancienne fonderie Gaspé à Murdochville. Un projet d'exploration pour le lithium vient de s'amorcer. Enfin, des travaux d'exploration s'effectuent sur un dépôt d'argilite rouge situé à 15 kilomètres au sud de Grande-Vallée. Ce projet vise à augmenter les ressources d'une éventuelle fosse d'exploitation servant à alimenter l'usine pilote d'alumine de Cap-Chat.

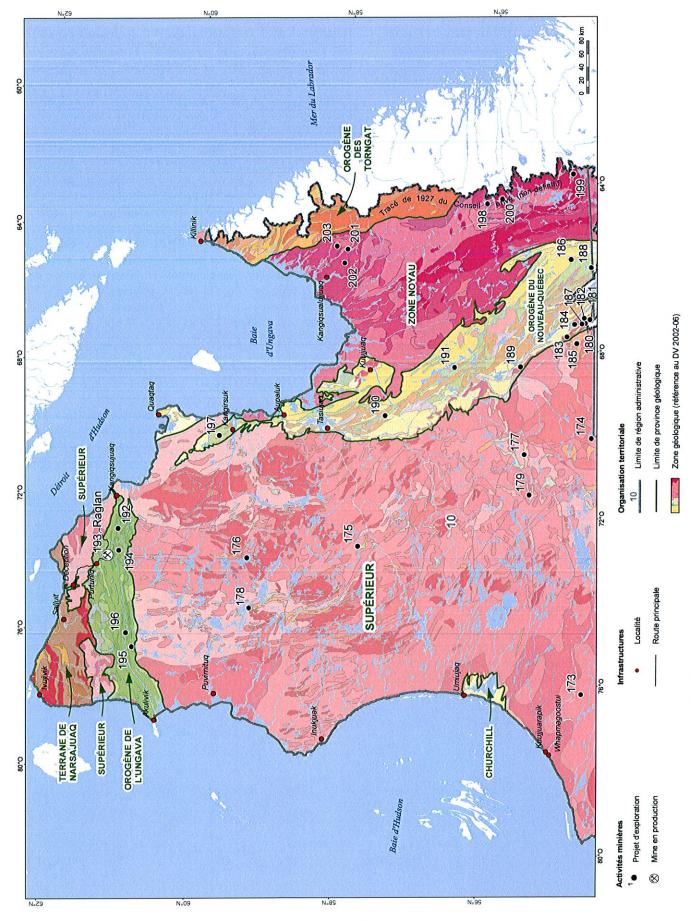


FIGURE 4.1. Projets d'exploration dans le Nord-du-Québec, territoire du Nunavik en 2010.

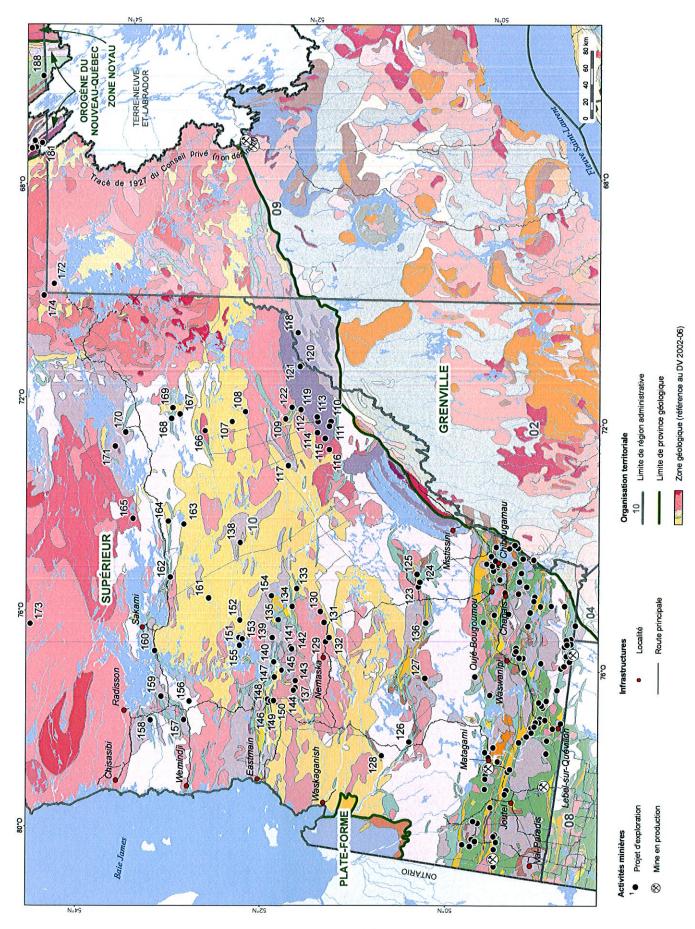


FIGURE 4.2. Projets d'exploration dans le Nord-du-Québec, territoire de la Baie-James en 2010.

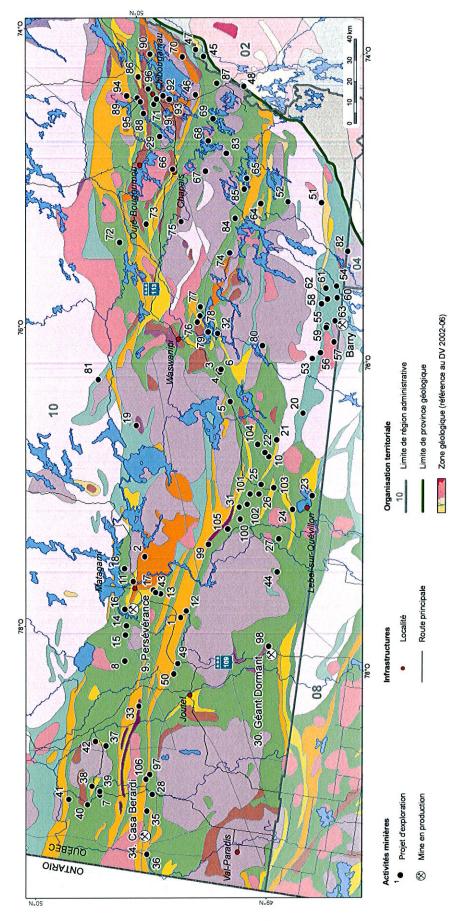


FIGURE 4.3. Projets d'exploration dans le Nord-du-Québec, secteur de Matagami-Chibougamau en 2010.

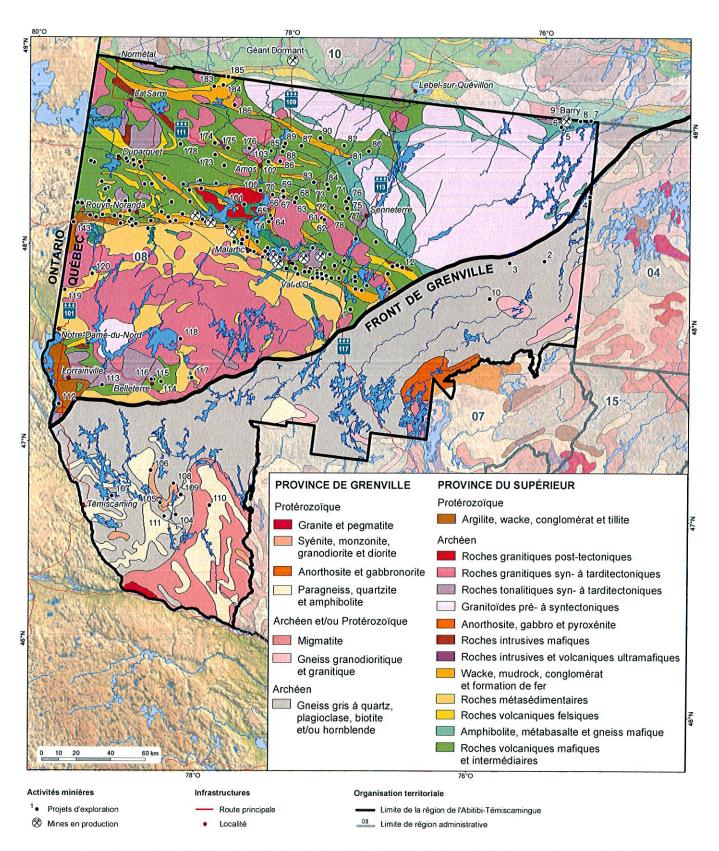
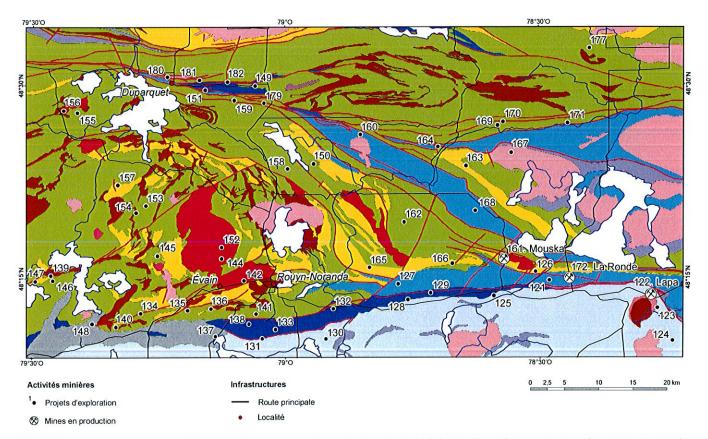



FIGURE 4.4. Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue en 2010.

FIGURE 4.5. Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue, secteur de Rouyn-Noranda-Cadillac en 2010.

()

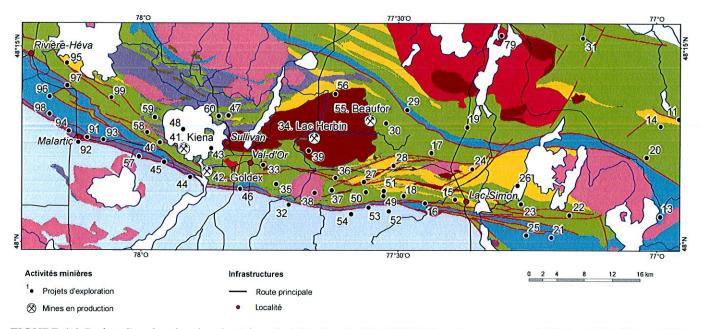


FIGURE 4.6. Projets d'exploration dans la région administrative de l'Abitibi-Témiscamingue, secteur de Malartic-Val-d'Or en 2010.

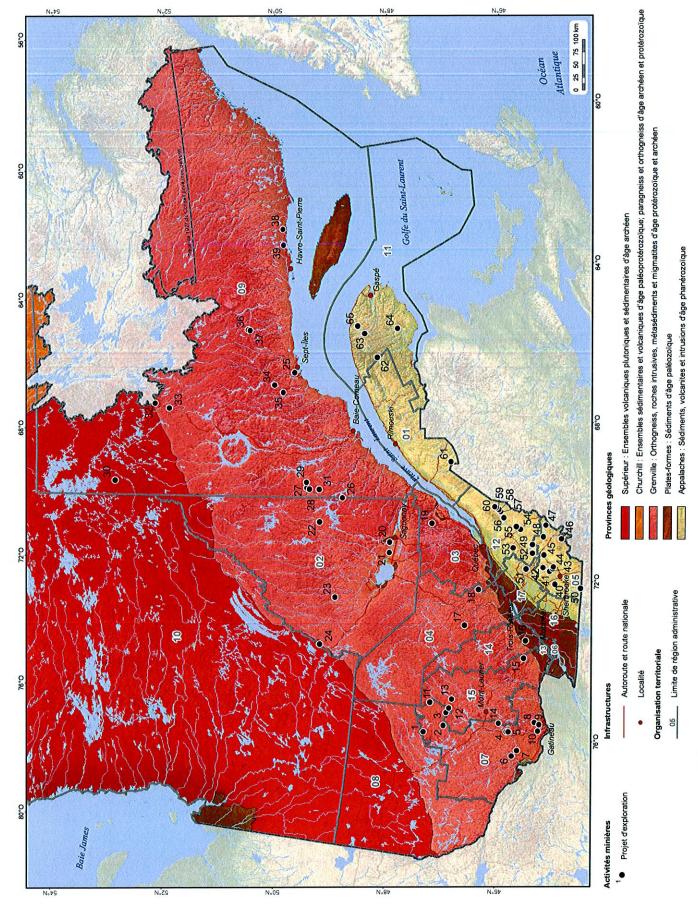


FIGURE 4.7. Projets d'exploration dans les régions du Québec, à l'exception de l'Abtibi-Témiscamingue et du Nord-du-Québec en 2010.

TABLEAU 4.1 - Répartition des dépenses en travaux d'exploration et de mise en valeur par substances recherchées au Québec en M\$								
Substances	2004	2005	2006	2007	2008	2009		
Métaux précieux	135,0	115,6	145,4	225,9	263,3	230,9		
Métaux usuels	57,0	53,0	70,8	118,3	122,4	59,1		
Diamant	28,0	22,8	29,0	26,9	12,8	9,9		
Métaux ferreux	0,3	1,4	22,2	29,2	23,5	14,8		
Uranium	1,4	4,3	22,0	70,9	87,3	48,1		
Lithium		-		-	0,2	6,4		
Éléments de terres rares		-	-	- -	1,3	2,8		
Autres substances	5,5	8,0	.5,7	. 5,1	15,3	7,1		
Total	227	205	295	476	526	379		

Source : Institut de la statistique du Québec

Régions administratives	Dépenses en 2008 (en M \$)	Dépenses en 2009 (en M \$)	% du total des dépenses en 2009
01 Bas-Saint-Laurent	С	. с	-
02 Sagueneay–Lac-Saint-Jean	7,7	7,6	2,0%
03 Capitale-Nationale	0,6	С	-
04 Mauricie	1,8	1,1	0,3%
05 Estrie	0,3	0,5	0,1%
06 Montréal	<u>.</u>	- <u>-</u>	-
07 Outaouais	2,3	0,3	0,1%
08 Abitibi-Témiscamingue	182,4	166,4	43,9%
09 Côte-Nord	31,5	13,5	3,6%
10 Nord-du-Québec	289,7	184,8	48,7%
11 Gaspésie–Îles-de-la-Madeleine	3,5	1,9	0,5%
12 Chaudière-Appalaches	3,8	1,8	0,5%
13 Laval	-	-	
14 Lanaudière	С		- .
15 Laurentides	2,2	. 1,1	0,3%
16 Montérégie	С	C	
17 Centre-du-Québec	0,0	0,0	. -
Total	526,1	379,3	100%

c : données confidentielles Source : Institut de la statistique du Québec

			dans la région administrative du l			
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
1	32F12	Vezza, Noyon	North American Palladium Ltd / Mines Agnico-Eagle Itée	Vezza	Au	GpMa(A), S (74:12105)
			Description du projet : Un nouve et indiquées totalisant 1,51 Mt à 5, (121 500 onces). La teneur de cou	9 g/t Au (288 600	onces) et des ress	ent Vezza a établi des ressources mesurée ources présumées de 0,75 Mt à 5 g/t Au
2	32F11, 12	Lozeau, Comporté, Galinée, Isle-Dieu	Apella Resources Inc.	Iron-T	Fe-Ti-V	E, Er, ET, G, GpMa(S), S (17:2222)
		······································		ralisées ont été dé	couvertes (T1, T2	% V ₂ O ₃ , 37,88 % Fe ₂ O ₃ et 6,33 % TiO ₂ et T3). Une rainure prélevée dans la zon 1.
3	32F08, 09	Le Sueur	Ressources Métanor inc.	Bachelor	Au	EF, Er, S (x:1000)
			Des travaux d'approfondissement o préfaisabilité en vue d'une remise			2010. Réalisation d'une étude de lor en 2012.
4	32F08, 09	Le Sueur	Ressources Métanor inc. / Ressources Aur inc. / Teck Cominco Ltd	Hewfran	Au	ET, S (x:600), T
						n à l'ouest de l'usine de la mine Bacheloi 1'à 14,80 g/t Au en échantillons choisis.
5	32F08	Nelligan, Benoist	Adventure Gold Inc.	Céré-113	Au	ET, GpMa(S), Pr
6	32F08, 09	Le Sueur, Nelligan, Benoist	Ressources Murgor inc. / Ressources Métanor inc.	Nelligan	Au	ET, S (x:500)
7	32E14	Brouillan	Exploration NQ inc.	Carheil	Cu-Zn-Au-Ag	Gc(ro), GpEm(F), S (5:3161)
			Description du projet : Sur l'indicolocalement en chlorite noire. Les mesur 1,3 m (sondage CA-2009-07) e	illeures teneurs cor	nprennent 0,26 %	Zn, 1,78 % Cu, 4,78 g/t Au et 18,5 g/t Ag
8	32E09, 16	La Gauchetière	Xstrata Canada Corporation / Donner Metals Ltd	PD1	Zn-Cu-Au-Ag	EF, Er, S (24:3090)
	٠		Description du projet : Le nouvea est évalué à 1,74 Mt à 4,55 % Zn,	u calcul de ressou 1,16 % Cu, 19,88	rces combinées (n g/ Ag, de 25 à 51:	nesurées et indiquées) pour le dépôt PD1 5 mètres de profondeur.
9	32F12, 13	Daniel	Xstrata Canada Corporation	Mine Persévérance	Zn-Cu-Au-Ag	S (x:x)
10	32F02, 07	Grevet	Ressources Breakwater Itée	Mine Langlois	Zn-Cu-Ag	ET
			Description du projet : La mine a rampes d'accès dans les zones 3, 4 permettre la reprise de la production	et 97 et du forage	embre 2008. Les d'exploration, pr	travaux de développement de deux ésentement en cours à la mine, devraient
11	32F13	Daniel, Isle Dieu	Xstrata Canada Corporation / Donner Metals Ltd	Radiore (Flanc Nord)	Zn-Cu-Au-Ag	S (3:1512)
· ·		· 				ement en profondeur du gisement de neurs de 2,35 % Cu, 0,13 % Zn, 2,59 g/t
12	32F12	Noyon	Société d'exploration minière Vior inc.	Noyard	Au	S (x:x)
13	32F12	Galinée	Xstrata Canada Corporation / Donner Metals Ltd	Galinée 14	Cu-Zn-Au-Ag	S (x:x)
14	32F13	Daniel	Xstrata Canada Corporation / Donner Metals Ltd	West New Hosco	Zn-Cu-Au-Ag	S (1:700)
15	32F13,	Daniel, La	Xstrata Canada Corporation / Donner Metals Ltd	McIvor	Zn-Cu-Au-Ag	S (3:2046)

NO-	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
16	32F13	Daniel	Xstrata Canada Corporation / Donner Metals Ltd	Persévérance Nord - DJV	Zn-Cu-Au-Ag	S (3:2112)
		•	Description du projet : Le forage de gabbro (1,44 % Cu sur 0,4 m).	DJV-10-84 a reco	upé un mince hori	zon sulfuré cuprifère dans une intrusion
1 <i>7</i>	32F13	Galinée	Xstrata Canada Corporation / Donner Metals Ltd	Flanc Sud	Zn-Cu-Au-Ag	S (1:651)
18	32 F 13	Lozeau	Geodefor inc. / D. Bouchard	Lozeau	Au-Cu-Zn	S (1:20)
19	32F15, 16	Montviel, Urfé	Ressources Géoméga inc. / Corporation minière Niogold	Montviel	ÉTR-Nb	ET, S (x:700)
20	32F01, 02	Ralleau, Wilson	Megastar Development Corporation	Ralleau	Cu-Zn-Au-Ag	G, Pr
21	32F01, 02	Mountain	Ressources Breakwater Itée	Orphée	Zn-Ag	GpEl(S), GpEm(F), S (x:10000)
22	32F02, 07	Duplessis, Grevet	Ressources Breakwater Itée	Langlois Nord	Zn-Ag	Gc(ro), GpEm(S)
23	32F02, 03	Quévillon, Verneuil	Hinterland Metals Inc.	Moulin	Au	ET
24	32F02	Quévillon	Hinterland Metals Inc.	Rouge	Au	ET
25	32F02, 07	Grevet, Franquet	Kirrin Resources Inc. / M. Proulx	Grevet ETR	ÉTR	E, ET, G, Gc (ro,s), GpMa(S), Pr, T
				ld, Sm). Un échar	ntillon prélevé dan	apporté une valeur de 1,61 % en oxyde: s un mince dyke, de 2,5 cm de largeur, ares légères.
26	32F02, 07	Franquet	Ressources Géoméga inc.	Émilie	ÉTR	ET
27	32F03, 04	Comtois, Fraser, Quévillon, Cramolet, Themines	Minéraux Maudore Itée	Comtois	Au-Zn	Er, ET, Gc(ro), \$ (323:82595)
			Description du projet : Un nouvea complété. De la surface jusqu'à une 3,2 g/t Au (504.384 onces d'or), en les ressources présumées sont de 3, coupure de 4,6 g/t Au.	e profondeur de 1 utilisant une tene	150 m, les ressourc eur de coupure de	es présumées sont de 4,87 Mt à 1,0 g/t Au. Sous 150 m de profondeur,
28	32E10, 11	Estrées	Ressources Cogitore inc. / Gestion lamgold-Québec inc.	Caribou	Zn-Cu-Au-Ag	ET, G, Gc(ro), GpEm(F,S), S (13:3789)
29	32G15	Scott, Lévy	Ressources Cogitore inc.	Lac Scott	Zn-Cu-Au-Ag	G, Gc(ro), GpEm(F), S (25:10300)
			dans un nouvel horizon de rhyolite,	située à 100 m a 6 Zn, 24,9 g/t Ag	u nord de la rhyoli et 0,3 g/t Au. La rh	lésignée comme lentille CFO, encaissée ite de Scott. Le forage DDH SL-93-106W nyolite de Scott est l'hôte de la lentille de 1 % Zn, 0,3 g/t Au et 36 g/t Ag).
30	32F04	Chaste, Glandelet	North American Palladium Ltd	Mine Géant Dormant	Au-Ag	GpEl(S), GpMa(A), S (194:37862), Sci (x:3500)
			visait à définir les prolongements de	au début de la pro itionnels du puits zones connues a 5-141-09), 21,9	oduction commerc de production est . été initié. Parmi le	2009. L'extraction souterraine ciale le 1er janvier 2010. en cours. Un programme de forage qui as meilleurs résultats, il y a : 14,38 g/t Au condage 65-967b-09, zone 3) et 16 g/t Au
31	32F06	Desjardins	North American Palladium Ltd	Florence	Au	S(4:1377)
32	32F09, 32 G 12	Lespérance, Gand, Le Sueur	Northern Superior Resources Inc. / Explorations Matamec inc. / Gestion lamgold-Québec inc.	Wachigabau	Au-Cu-Zn- Diamant	GpEl(S), GpMa(S), S (4:900)
			•	ime de forage a é	StA záaliaá ulaant à .	définir des structures aurifères identifiées

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROIETS	SUBSTANCES	TRAVAUX
3	32E09, 10	Montgolfier, Aloigny	Exploration Barlow inc.	Iron Hills	Fe	GpMa(S), 5 (x:300)
4	32E11	Casa Berardi	Mines Aurizon Itée	Mine Casa Berardi	Au	EF, Er, S (24:x)
			ont recoupé des lentilles aurifères o de quartz, d'unités cherteuses et de pour le sondage CBP-0160. En vue	lans le prolongem e sulfures massifs. d'une exploitatio luer des ressource	ent de la zone 123 Les meilleures teno n en fosse à ciel ou es mesurées et indi	exploration au niveau 810 m de la min 3. La minéralisation est formée de veir eurs comprennent 42,1 g/t Au sur 21, uvert à la zone Principale, un nouveau quées totalisant 5,35 Mt à 4,02 g/t Au upure de 0,86 g/t Au a été utilisée.
5	32E11	Casa Berardi, Raymond, Estrées,	Lake Shore Gold Corporation / Mines Aurizon Itée	Casa Berardi, Bloc Est	Au	S (8::2814)
	, i	Puiseaux				•
			résultats comprennent 11,54 g/t Au	sur 3,89 m (sono	lage CE-10-30). La	eurs intervalles aurifères. Les meilleurs minéralisation aurifère est contenue hes en magnétite et de formation de f
6	32E11, 12	Dieppe	Lake Shore Gold Corporation / Mines Aurizon Itée	Casa Berardi, Bloc Ouest	Au	\$ (23:6000)
			Description du projet : Le sondag déformés renfermant des veinules o valeurs comprennent 3,44 g/t Au su	de quartz-ankérite	et de la pyrite-pyi	et des sédiments graphiteux altérés et rrhotite-arsénopyrite. Les meilleures
7	32E15	Beschefer	SOQUEM INC.	Beschefer	Cu-Au-Zn-Ag	GpEm(S)
8	32E14, 15	Brouillan	SOQUEM INC.	Wagosic	Cu-Au-Zn-Ag	E, ET, GpEl(S)
9 .	32E14, 15	Brouillan	Xstrata Canada Corporation / Mines Virginia inc.	Ruisseau Puiseaux	Zn-Cu-Au-Ag	Gc(ro), \$ (2:950)
0	32E14	Carheil, Brouillan	Ressources Cogitore inc.	Selbaie West	Zn-Cu-Au-Ag	Gc(ro), Pr
1	32E14, 15	La Peltrie, Lanouillier	Adventure Gold Inc.	Casgrain	Au	ET, GpMa(S), Pr
12	32E15	Beschefer	Adventure Gold Inc.	Sicotte	Au	ET, GpMa(S), Pr
3	32F12	Galinée	Xstrata Canada Corporation / Donner Metals Ltd	Bracemac- McLeod	Cu-Zn-Au-Ag	EF, Er, S (15:x)
				es et probables so ion sera de 4 ans od ont été calculé	nt de 3,73 Mt à 9,0 à un taux de produ es à 2,47 Mt à 9,21	1 % Zn, 1,22 % Cu, 39,81 g/t Ag et
.4	32F03, 04	Cramolet, Comtois, Themines, Fraser, Fonteneau, Barrin	Exploration Midland inc. / North American Palladium Ltd	Laflamme	Au	GpEl(S), GpEm(A,F), GpMa(S), S (7:2569)
5	32G09	Dollier	Ressources Cartier inc.	Dollier	Au	E, G, GpEl(S), T
6	32G09	Queylus	Exploration Lounor inc.	Queylus	Au-Cu-Ag	\$ (6:x)
7	32G09	Dollier, Lemoine	SOQUEM INC.	Dollier	Au-Cu-Zn	E, G, T
8	32G08, 09	La Dauversière, Charron,	Priority Uranium Corporation	Frontline (Lac Malo)	U-Cu-Au	GpMa(S), Pr

TABL	EAU 4.3 - Proje	ts d'exploration	n dans la région administrative du l	Nord-du-Québec	en 2010 ⁽¹⁾ (voir fi	gures 4.1, 4.2 et 4.3).
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
49	32E08, 09	Douay	Société d'exploration minière Vior inc. / Aurvista Corporation	Douay, Douay Ouest, Douay Est, Joutel	Au	Er, Env, S (x:12 000)
				rées et indiquées t	otalisant 313 000	e Douay Ouest a été réalisée, celles-ci t à 7,75 g/t Au (78 000 onces d'or) et or).
50	32E08	Douay, Joutel	Société d'exploration minière Vior inc. / SOQUEM INC. / Northern Abitibi Mining Corporation	Douay JV, NW	Au	S (7:x)
51	32G02	Bressani	Montero Mining and Exploration Ltd	Lac Yvonne	U-Au	E, Pr
52	32G02, 03, 06, 07	Lespinay, Hazeur, Druillettes, Pambrun, Machault, Langloiserie, Bressani	Northern Superior Resources Inc.	Surprise	Au	E, Gc(s), GpEl(S), GpMa(S)
53	32F01, 32 G04	Effiat	Semeco Inc.	Urban	Αυ	G, Pr
54	32G04	Urban, Lacroix	Exploration Amseco Itée	Urban Ouest	Au	GрMa(A)
55	32G04	Carpiquet, Urban	Exploration Amseco Itée	Urban Moïse	Au	GрMa(A)
56	32F01, G04	Carpiquet, Effiat	Exploration Amseco Itée	Urban Oasis	Au .	GрMa(A)
57	32 G 04	Carpiquet	Hinterland Metals Inc.	Lockout	Au	S (13:2105)
			Description du projet : Les forage porphyriques, entre une unité grap intervalle de 5,9 g/t Au sur 3,0 m d	hiteuse et des lave	s mafiques. Les m	long des contacts, injectés de dykes eilleurs résultats comprennent un m (sondage LK10-25).
58	32G04	Urban	Eagle Hill Exploration Corporation / Noront Resources Ltd / Ressources Murgor inc. / Ressources Freewest Canada inc.	Lac Windfall	Au	GpEl(S), GpEm(S), S (57:17340)
			Description du projet : Des forage les meilleurs résultats, il y a 17,36 ε veines riches en pyrite au sein d'un	/t Au sur 12 m (so	ndage EAG-10-24	pé plusieurs intervalles minéralisés. Parm 0). La minéralisation est formée de
59	32G04	Barry, Urban, Carpiquet	Exploration Amseco Itée	Barry-Urban	Au-Cu-Zn	E, ET, GpEl(S), GpMa(A,S), Pg
60	32G04	Urban	Exploration Amseco Itée / Ressources Beaufield inc.	Lac Rouleau	Au	GpEm(S), GpMa(A,S), Pr
61	32G04	Urban, Belmont, Lacroix	Stellar Pacific Ventures Inc.	Lac Urban	Au	E, ET, Gp, S (x:x)
62	32G04	Urban	Alto Ventures Ltd	Alcudia	Au	E, S (x:x), T
63	32G04	Urban	Urbana Corporation	Macho River Gold Mines Ltd	Au	ET, GpMa(S)
64	32C06, 07	Gradis, Druillettes	Paget Minerals Corporation	Lac Doda	Au	GpEm(S), GpMa(S), S (x:x)
65	32C07	Hazeur, Druillettes	Golden Share Mining Corporation / B. Boudreault	Vent d'Or	Au	G, Gc(t), GpEm(S), GpMa(S), Pr
66	32G15	Lévy	Explorateurs-Innovateurs de Québec inc.	Opémisca	Cu-Au	ET, GpEl(S), S (19:1900),T

IADLI	EAU 4.3 - Projet	s d'exploration	dans la région administrative du N	lord-du-Quebec	en Zutu" (voir fi	gures 4.1, 4.2 et 4.3).
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
67	32G10	Rale, Brongniart, Lescure, Brochant	L. Desgagné	Lac Sébastien	Mo-ÉTR	* E
68	32G10	Brongiart, Rale, Fancamp,	G.L. Géoservice inc. / M. Bouchard	WinWin	Au	E, G, T
69	32G09, 10	Hauy Fancamp, Queylus, La	Tawsho Mining Inc.	Chevrier	Au	Er, ET
		Dauversière, Hauy				
			Description du projet : Une nouver ressources présumées de 4,6 Mt à 1 teneur de coupure utilisée est de 1 pyrite recoupant des gabbros et des	1,99 g/t Au (295 (g/t Au. La minéra)00 onces d'or) en	e Chevrier indique qu'il y a des tre la surface et 250 m de profondeur. I st formée de veines de quartz-ankérite-
70	32G09, 16, 32H13	Lemoine, Rinfret, Dollier	Métaux Blackrock inc.	Blackrock	Fe-V-Ti	EF, Env, S (77:20803), TM
71	32G16	McKenzie	SOQUEM INC.	David	Zn-Au	S (2:800)
72	32G14, 32J03	Guettard, Lamarck	Acrex Ventures Ltd / G.L. Géoservice inc. / M. Bouchard	Grizzly-Kellar	Au	E, G, GpEl(S), S (5:500)
73	32G14	Lamarck	Ressources Sirios inc. / G.L. Géoservice inc. / M. Bouchard	MTK	Au-Ag-Cu	E, Pg
74	32 G 11	Guercheville	SOQUEM INC.	Fenton	Au	E, T
75	32G11, 14	Anville, Dolomieu, Daubree	Ressources Géoméga inc.	Oriana	Au	ET
76	32G12	Gand	Exploration NQ inc. / Entreprises minières Globex inc.	Lac Shortt	Au	ET, Gc(ro), Pr
77	32G12	Gand, La Roncière	Exploration NQ inc. / Corporation minière Inmet / SOQUEM INC.	La Roncière	Au	G, Gc(ro), Pr, T
78	32G12	Gand	Exploration NQ inc.	Gand I	Au	E, G, Gc(ro), Pr
79	32G12	Lespérance	Exploration NQ inc.	Opawica	Au	G, Pr
80	32G05	Margry, Le Tac	L. Desgagné	Nicobi	Cu-Ag-Au	E, T
81	32K01	Bernières, Monseignat	Z-Gold Exploration Inc.	Coda	Zn	GpEm(S), GpMa(S), Pr, S (3:1000)
82	32G03, 32B14	Buteux	L. Desgagné	Buteux	Au	Е, Т
83	32G10	Rale	Stellar Pacific Ventures Inc. / 9148-5706 Québec inc. / G.L. Géoservice inc. / M. Bouchard	Eac aux monstres	Au .	E, ET, Gc(ro), Pr, S (x:3000), T
			Description du projet : Un prograt effectué. Sur l'indice Mégane, com de quartz noir, les meilleurs résultat	posé d'une zone i	de cisaillement mi	néralisée et altérée, injectée d'une veine
84	32G06, 11	Drouet, Gradis, Druillettes	Ressources Cartier inc.	Diego	Au	Е, ЕТ, Рg
85	32G07, 10	Rale, Hazeur, Druillettes	Mines Agnico-Eagle Itée	Lac des Vents	Cu-Zn-Au-Ag	S (x:1000)
86	32G16	McKenzie,	Mines Agnico-Eagle Itée	Blondeau	Au-Cu	S (4:2000)

			n dans la région administrative du l			
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
87	32G09	Charron, Dollier, La Dauversière, Queylus	Les Ressources d'Arianne inc.	R-14 (La Dauversière)	Au-Ag	. E, T
88	32G15, 16	Barlow, McKenzie	Corporation Minéraux Alexandria	Gwillim	Au	S (4:x)
89	32G16	McKenzie	Mines Agnico-Eagle Itée	De la Faille Gwillim	Au	S (4:x)
90	32G16	Roy	Mines Agnico-Eagle Itée	Roy	Cu-Zn-Au-Ag	S (2:x)
91	32 C 16	McKenzie	2736-1179 Québec inc.	Lac Sauvage	Au-Cu	S (x:1443)
92	32G16	Obalski	2736-1179 Québec inc.	Île Noil	Cu-Au-Fe-Ti-V	S (x:3297)
93	32G15, 16	Obalski, Scott	2736-1179 Québec inc.	Lac Caché	Cu-Au-Fe-Ti-V	S (6:918)
94	32G15, 16, 32J01, 02	Barlow, Blaiklock, McKenzie, Richardson	Ressources Murgor inc.	Waconichi	Au	E, ET, Gc(ro,t), GpEm(A)
95	32G16	McKenzie	SOQUEM INC.	McGold (MOP fl)	Au-Cu	S (10:2540)
96	32G16	McKenzie	SOQUEM INC.	Brosman	Cu-Au	S (x:x)
97	32E10	Estrées, Estrades, Orvilliers	Ressources Cogitore inc.	Estrades	Zn-Cu-Au-Ag	ET, Gc(ro), GpEm(F,S), S (5:1823)
98	32E01, 32F04	Maizerets, Chaste, Glandelet, Soissons	North American Palladium Ltd	Dormex	Au	GpEl(S), S (21:9966), Sci (x:x)
99	32F06	Noyelles	Otish Energy Inc.	Noyelles	Au	ET, S (x:1000)
100	32F06	Bruneau, Desjardins	North American Palladium Ltd	Discovery	Au	S (40:495)
101	32F07	Desjardins	North American Palladium Ltd	Flordin	Au	S (212:25720)
			Description du projet : De nouvea 0,68 Mt à 4,25 g/t Au et des ressou	aux calculs ont per rces présumées de	mis d'évaluer des e 1,45 Mt à 3,63 g	ressources mesurées et indiquées de /t Au.
102	32F06, 07	Desjardins	North American Palladium Ltd / Canadian Royalties Inc.	Cameron Shear	Au	S (12:3567)
103	32F02	Franquet, Grevet	Ressources Breakwater Itée	Rivière Wedding	Au	GpEm(S), GpMa(S), S (x:1500),T
104	32 F 07	Duplessis, Mountain	Ressources Breakwater Itée	Duplessis- Mountain	Au	S (x:1500), T
105	32F06	Bruneau	Adventure Gold inc.	Bruneau- Sinclair	Au	ET, GpMa(S), Pr, S (1:738)
106	32E10	Puiseaux, Orvilliers	GLR Resources Inc.	Puiseaux	Au-Cu-Ag	GpEl(S), GpMa, S (3:1800)
107	33A16		Stornoway Diamond Corporation / SOQUEM INC.	Renard	Diamant	Er, EF, Env, S (91:7830)
			Description du projet : La coentre environnemental et du milieu socia trimestre de 2011. Extension en pro	l sur le projet diam	nantifère Renard, c	qui devraient être complétées au 3°
108	33A08, 09,15, 16, 33H01, 23D12,13		Exploration Dios inc.	33 Carats	Diamant-Au	G, Gc(t), Pr

			n dans la région administrative du N			
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
09	33A08		Eastmain Resources Inc.	Mine Eastmain	Au-Ag-Cu	E, G, Gc(ro,s), Pr, S (46:14584)
			(320,3-328,2 m) sous la zone Mine	: A. Les résultats de ofondeur et latérale	e forage complété ement. La minéral	lisation (pyrite, pyrrhotine, chalcopyrite
110	32P16, 22M13		Cameco Corporation	Otish South	U	GpEm(A), GpMa(A), GpGr(S), S (11:3400)
111	32P16, 33A01		Explorations Ditem inc.	Otish Uranium	U	GpEm(S), GpRa(S), S (4:479)
112	32P16, 33A01		Ressources Strateco inc.	Matoush	U	Gp(A), S (18:10268)
						1,5 km au sud des trois lentilles connue ection de $0,33 \% U_3O_8$ sur 5,1 mètres,
113	32P16, 33A01		Ressources Strateco inc.	Matoush Extension	U	Gp(A), Pg
114	32P16		Ressources Strateco inc.	Éclat	U	Gp(A), \$ (47:27589)
115	32P16		Ressources Strateco inc. / Pacific Bay Minerals Ltd	Pacific Bay	υ	Gp(A), Pr, S (3:1989)
			Description du projet : Découvert Matoush du projet Matoush situé 4		uranifère, appelée	« Faille Alfred », semblable à la faille
116	32P10, 15, 16, 22M13, 33A01		Exploration Dios inc.	Hotish	U-Diamant	Pg
117	33A02		Western Troy Capital Resources Inc.	Lac Macleod	Cu-Mo-Ag-Au	EF, Env, Sci(20:65)
118	23D02		Virginia Energy Resources Inc.	Lac Magneron	U	E, T
119	23D03		Virginia Energy Resources Inc.	Redgreen	U.	Е, Т
120	23D03		Ressources Abitex inc.	Epsilon	U-Au-Ag-Pb	E, G, GpMa(S), GpRa(S), Pr, S (21:1159), T
			Description du projet : L'indice Ep 0,449 % U ₃ O ₈ , 0,84 g/t Au en écha	osilon-B a retourné antillonnage en rair	9,6 mètres à 0,41 nure.	13 % U ₃ O ₈ , 1,14 g/t Au et 5,1 mètres à
121	23D02, 03		Ressources Abitex inc. / Areva NC Inc. / SOQUEM INC.	Lavoie	U-Au-Ag-Pb	Er, ET, Gc
			Description du projet : Ressource et des ressources présumées de 74	s Abitex inc. a éval 9 000 t à 0,56 % L	ué des ressources J ₃ O ₈ sur l'ensembl	indiquées de 391 000 t à 0,45 % U ₃ O ₈ le des zones du gîte « L ».
122	23D04, 05, 06		Ressources Majescor inc. / Virginia Energy Resources Inc.	Lac Laparre	U	Е, Т
123	32J10	•	Globestar Mining Corporation / SOQUEM INC.	Moblan Lithium	Li-Na- feldspath K	Er, S (99:13456), TM
		i .		une épaisseur de		té du filon-couche de pegmatite sur une s; le forage 1331-10-89 a recoupé une
124	32J09, 10, 11 15, 16, 32O01		Ressources Beaufield inc. / Ressources Melkior inc.	Troilus JV	Cu-Zn-Au-Ag	GpGr(A), S (22:7132)
						nière de pli du gîte Tortigny, a rapporté 72,02 g/t Ag et 0,53 g/t Au sur 322,15
1.25	32J10		Western Troy Capital Resources Inc.	Troilus	Cu-Mo	Pg
126	32K11, 12		Western Troy Capital Resources Inc.	Eider	Cu-Au-Ag-Pd	E, Pr
-						

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	gures 4.1, 4.2 et 4.3). TRAVAUX
127	32K09	CHIONS				
128	32K09 32K13		Canadian Royalties Inc.	Foreurs	Cu-Ni	GpEm(A), GpMa(A)
			Canadian Royalties Inc.	Horden	Cu-Ni	GpEm(A), GpMa(A)
129	32012		Exploration Nemaska inc.	Whabouchi	Li-Rb-Be	E, Er, ET, G, Pr, S (82:15670), T
			1,63 % Li ₂ O et 449 ppm BeO, et d	n Nemaska inc. a es ressources prés	estimé des ressour umées de 15,4 Mt	ces mesurées et indiquées de 9,8 Mt à à 1,57 % Li ₂ O et 420 ppm BeO .
130	32O11, 12, 14		Exploration Nemaska inc.	Lac Levac	Cu-Ni-Co- ÉGP-Au-Ag-Zn	G, Pr, S (2:1200)
			Description du projet : Intersectio profondeur des ressources mesurée			0,05 % Co, 1,84 g/t Pd à 100 mètres e Ni, 0,55 % Cu.
131	32O11, 12, 13, 14		Exploration Nemaska inc.	Lac Arques (Bouvier, Complexe Rupert)	Cu-Ni-Co- ÉGP-Au-Ag-Zn	E, G, Gc(s), GpEm(A), GpMa(A), Pr, S (2:400), T
132	32O12, 32N09		Exploration Nemaska inc.	Lac des Montagnes (Duval)	Cu-Ni-Co- ÉGP-Au-Ag-Zn	E, G, GpEl(S), Pr, T
			Description du projet : Découvert 12 km de longueur, conducteur Bo	e d'un horizon de uvier.	sulfures massifs ex	khalatifs de 1 à 4 mètres d'épaisseur pa
133	33B03		Mines Virginia inc.	Auclair	Au	S (13:4033)
134	33B02, 03, 04	100	Goldcorp Inc./ Exploration Azimut inc.	Wabamisk	Au-Ag-Cu-Zn- Pb-Mo	E, G, Pr, S (8:1976), T
÷			Description du projet : Valeurs ano en tranchée, 8,26 g/t Au sur 1,0 m.	males obtenues er	or, arsenic et anti	moine. En forage, 1,22 g/t Au sur 10,0 n
135	33B04, 05		Eastmain Resources Inc.	Clearwater	Au-Bi-Te	E, Er, G, Gc(s), S (39:9255), T, TM
			Description du puelet : Décripe			
			jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr	à environ 2,5 km	à l'est du dépôt au	
136	32J11		jusqu'à 41,5 g/t Au et 23,10 g/t Te,	à environ 2,5 km	à l'est du dépôt au	rifère Eau Claire. Mise en évidence d'u rd de la zone 850 W.
	32J11 32N14,15		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr	à environ 2,5 km ès de la surface, s	à l'est du dépôt au ur une cible au no	rifère Eau Claire. Mise en évidence d'u
137			jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. /	à environ 2,5 km ès de la surface, s Sirmac	à l'est du dépôt au ur une cible au no Li	rifère Eau Claire. Mise en évidence d'u rd de la zone 850 W. Pg
136 137 138	32N14,15 33B09, 10,		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc.	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs	urifère Eau Claire. Mise en évidence d'u rd de la zone 850 W. Pg S (x:x)
137 138	32N14,15 33B09, 10, 16 33C01, 08,		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or o 0,125 % Zn sur 1,1	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn- Diamant « Conducteur » (bl. D mètre en rainure	rifère Eau Claire. Mise en évidence d'u rd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de
137 138	32N14,15 33B09, 10, 16 33C01, 08,		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et 0	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or o 0,125 % Zn sur 1,1	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn- Diamant « Conducteur » (bl. D mètre en rainure	rifère Eau Claire. Mise en évidence d'u rd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de
137 138 139	32N14,15 33B09, 10, 16 33C01, 08, 33B04, 05 33C01, 02,		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et 0 et chloritisés avec sulfures dissémine	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or c 0,125 % Zn sur 1,1 és recoupés par de	à l'est du dépôt au une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn-Diamant c Conducteur » (bl.) mètre en rainure es veines de quartz	rifère Eau Claire. Mise en évidence d'urd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de dans des basaltes silicifiés, carbonatisé e centimétriques minéralisées.
138 139 139	32N14,15 33B09, 10, 16 33C01, 08, 33B04, 05 33C01, 02, 07, 08		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et 0 et chloritisés avec sulfures dissémine Eastmain Resources Inc.	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or d 0,125 % Zn sur 1,0 és recoupés par de Reservoir	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn- Diamant « Conducteur » (bl.) mètre en rainure es veines de quartz Cu-Au-Ag	rifère Eau Claire. Mise en évidence d'urd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de dans des basaltes silicifiés, carbonatisé coentimétriques minéralisées. Pg
137 138 139	32N14,15 33B09, 10, 16 33C01, 08, 33B04, 05 33C01, 02, 07, 08 33C01		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et 0 et chloritisés avec sulfures dissémine Eastmain Resources Inc. Ressources Jourdan inc. Exploration First Gold inc. Description du projet : Plusieurs nu le sondage LR-10-110 qui a retournet 75 ppm Ga sur 12,6 mètres. Pour	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or c 0,125 % Zn sur 1,6 és recoupés par de Reservoir Pivert East / Stairs Pivert/ Rose Lithium Duvelles intersectic é des valeurs de 2 e le dépôt Rose, or 0,377 ppm BeO e	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn-Diamant Conducteur » (bl.) mètre en rainure es veines de quartz Cu-Au-Ag Li-ÉTR Li-Ta-Rb-Cs-Be ons en forage de d.,15 % Li ₂ O, 1 594 na évalué des resset 71 ppm Ga, et de	rifère Eau Claire. Mise en évidence d'urd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de dans des basaltes silicifiés, carbonatisé centimétriques minéralisées. Pg E, GpMa(A), GpRa(A), Pg, E, Er, G, Pg, S (139:17000), T ykes pegmatitiques à spodumène dont g/t Rb, 150 ppm Ta ₂ O _s , 147 ppm BeO ources indiquées de 11,44 Mt à 1,34 % les ressources présumées de 2,17 Mt à
137 138 139 140 141	32N14,15 33B09, 10, 16 33C01, 08, 33B04, 05 33C01, 02, 07, 08 33C01		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et c et chloritisés avec sulfures dissémine Eastmain Resources Inc. Ressources Jourdan inc. Exploration First Gold inc. Description du projet : Plusieurs no le sondage LR-10-110 qui a retournet 75 ppm Ga sur 12,6 mètres. Pour Li ₂ O, 165 ppm Ta ₂ O ₅ , 2668 ppm Resources production de projet sulface de de projet sulfa	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or c 0,125 % Zn sur 1,6 és recoupés par de Reservoir Pivert East / Stairs Pivert/ Rose Lithium Duvelles intersectic é des valeurs de 2 e le dépôt Rose, or 0,377 ppm BeO e	à l'est du dépôt au ur une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn-Diamant Conducteur » (bl.) mètre en rainure es veines de quartz Cu-Au-Ag Li-ÉTR Li-Ta-Rb-Cs-Be ons en forage de d.,15 % Li ₂ O, 1 594 na évalué des resset 71 ppm Ga, et de	rifère Eau Claire. Mise en évidence d'urd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de dans des basaltes silicifiés, carbonatisé centimétriques minéralisées. Pg E, GpMa(A), GpRa(A), Pg, E, Er, G, Pg, S (139:17000), T ykes pegmatitiques à spodumène dont g/t Rb, 150 ppm Ta ₂ O _s , 147 ppm BeO ources indiquées de 11,44 Mt à 1,34 % les ressources présumées de 2,17 Mt à
137 138 139 140	32N14,15 33B09, 10, 16 33C01, 08, 33B04, 05 33C01, 02, 07, 08 33C01 33C01		jusqu'à 41,5 g/t Au et 23,10 g/t Te, potentiel à basse teneur aurifère, pr Exploration Nemaska inc. Ressources Sirios inc. / Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Exploration Dios inc. Description du projet : Découverte 4,9 g/t Au, 14 g/t Ag, 0,28 % Pb et 0 et chloritisés avec sulfures disséminé Eastmain Resources Inc. Ressources Jourdan inc. Exploration First Gold inc. Description du projet : Plusieurs no le sondage LR-10-110 qui a retourne et 75 ppm Ga sur 12,6 mètres. Pour Li ₂ O, 165 ppm Ta ₂ O ₅ , 2668 ppm Rt 1,27 % Li ₂ O, 138 ppm Ta ₂ O ₅ , 1529 Exploration Dios inc. / Ressources	à environ 2,5 km ès de la surface, s Sirmac Pontax-Lithium PAM U33 e de l'indice d'or o 0,125 % Zn sur 1,1 és recoupés par de Reservoir Pivert East / Stairs Pivert/ Rose Lithium Duvelles intersection de des valeurs de 2 ele dépôt Rose, or o, 377 ppm BeO e ppm Rb, 311 ppm	a l'est du dépôt au une cible au no Li Li-Rb-Be-Ta-Cs U-Au Au-Ag-Pb-Zn-Diamant Conducteur » (bl.) mètre en rainure es veines de quartz Cu-Au-Ag Li-ÉTR Li-Ta-Rb-Cs-Be ons en forage de d, 15 % Li ₂ O, 1 5 94 a évalué des ress et 71 ppm Ga, et de n BeO et 70 ppm	rifère Eau Claire. Mise en évidence d'urd de la zone 850 W. Pg S (x:x) Pg G, Gc(t), GpEl(S), GpMa(A), Pr oc Est) qui a retourné des teneurs de dans des basaltes silicifiés, carbonatisé e centimétriques minéralisées. Pg E, GpMa(A), GpRa(A), Pg, E, Er, G, Pg, S (139:17000), T ykes pegmatitiques à spodumène dont g/t Rb, 150 ppm Ta ₂ O ₅ , 147 ppm BeOources indiquées de 11,44 Mt à 1,34 % les ressources présumées de 2,17 Mt à Ga.

NO.	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
146	33C02, 03, .06, 07		Les Ressources d'Arianne inc. / Lithium One Inc.	Wabamisk / Komo	Au-Cu-Zn-Li	E, Pr
147	33C02, 07		Mines Virginia inc.	Anatacau / Wabamisk	Au	E, G, Gc(t), GpEl(S), GpMa(S), Pr, S (30:4215), T
		: .	Description du projet : Meilleure i	intersection en fora	age : 46,5 g/t Au s	sur 4,0 mètres.
148	33C03		Lithium One Inc. / Galaxy Resources Ltd	James Bay Lithium	Li	E, Er, TM
			Description du projet : Lithium Oressources présumées de 10,47 Mt	•	s ressources indic	quées de 11,75 Mt à 1,30 % Li ₂ O et des
149	33C03, 32N14	-	Rock Tech Lithium Inc.	Kapiwak	Li-ÉTR	Pg
150	33C03		Y. Lemelin	Val Joe Lin	Au-Cu	Pg
151	33B12, 33C09		Goldcorp Inc. (Les Mines Opinaca Itée)	Éléonore	Au .	E, Er, G, S (50:24000), T
			Description du projet : On a débu profondeur de 750 mètres. Le fonç	ité au dernier trime age d'une rampe d	estre de 2010, le d'une longueur de	fonçage d'un puits d'exploration d'une e 5,3 km devrait débuter en 2011.
152	33C09, 33 B 12, 13		Les Mines de la Vallée de l'Or Itée / Ressources Sirios inc.	Cheechoo B	Au	E, G, Gc(s), GpMa(S), Pr
153	33C09, 33B12		Eastmain Resources Inc. / Goldcorp Inc. (Les Mines Opinaca Itée) / Exploration Azimut inc.	Éléonore Sud JV	Au	G, Gc(ro), Pr, S (17:3622), T
			Description du projet : Les travaux surface, avec une intersection de 3,			kilométrique de la zone JT près de la
154	33C08, 09, 10, 33B02, 03, 06		Exploration Midland inc.	Baie James Eleonore	Au	E, Gc(ro), Pr
155	33C09	**	Ressources Beaufield inc.	Opinaca	Cu-Au-Ag-Mo	E, GpEl(S), Pg
156	33F03		G. L. Géoservice inc.	Langelier	Au-Cu-Ni- Pd-Pt	E, Pg
157	33F04		Ressources minières Vanstar inc.	Patica	Au-Çu-Zn	S (9:1090)
158	33F05, 12		Ressources minières Augyva Inc./ Canadian Century Iron Ore Corporation	Lac Duncan	Fe	Env, Er, TM
			Description du projet : Publication de 25,6 Mt à 23,48 % Fe et des res	n de ressources me sources présumées	surées de 5,7 Mt de 821,1 Mt à 2	à 23,29 % Fe, des ressources indiquées 4,56 % Fe sur les dépôts 1 à 6
159	33F06		Ressources minières Pro-Or inc./ Everett Resources Inc.	Ménarik	Cr-Ni-Cu-Au- Pt-Pd	ET
160	33F09, 10		Mines Virginia inc.	La Grande Sud	Au	G, Gc(t), S(3:409)
161	33B14, 33G03, 04		Ressources Sirios inc./ Exploration Dios inc.	Upinor	U	E, Pr
162	33G05, 06, 07		Mines Virginia inc.	Poste Lemoyne Extension	Au	Gc(t), GpEl(S), GpMa(S), Pg, S (x:1043),
			Description du projet : Plusieurs n défini par une anomalie d'or dans l	ouveaux indices d es tills sur une dist	écouverts en 2019 ance de 1 km par	0, dont le secteur « Grille David » qui est 250 mètres.
163	33G08, 33H05		Mines Virginia inc. / Goldcorp Inc.	Corvet Est	Au	S (7:3361)
	•		Description du projet : Quelques sur 6,2 m.	intersections anom	ales en or incluar	nt 3,09 g/t Au sur 1,05 m et 1,29 g/t Au
164	33G09, 33H12		Mines Virginia inc.	FCI	Au	G, S (11:3035)
	•		Description du projet : En forage, 0,13 g/t Au sur 10,7 m.	plusieurs intersecti	ons anomales en	or, incluant 0,66 g/t Au sur 12,0 m et

TABL	EAU 4.3 - Projet	s d'exploration	n dans la région administrative du N	Nord-du-Québec o	n 2010 ⁽¹⁾ (voir fig	gures 4.1, 4.2 et 4.3).
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS		SUBSTANCES	TRAVAUX
165	33C16		Ressources Sirios inc.	Tilly	Mo-Cu-Au	Emi, G, Gc(ro)
166	33H01, 02, 07, 08, 09, 10, 33G11		Exploration Midland inc. / Mines Agnico-Eagle Itée	Baie James Or	Au	Gc(ro), S (10:1520)
167	33H08, 09		Mines Virginia inc.	Nichicun-Escale	Au	E, Pr, T
			Description du projet : Quelques 1,19 g/t Au sur 4,0 m en rainure.	nouveaux indices	d'or ont été déco	uverts rapportant 1,02 g/t Au sur 5,7 m et
168	33H09		Ressources Sirios inc. / Mines Virginia inc.	Escale	Au-Zn	Gc, Gp
169	33H09		Somdra Inc.	Lac Duhesme	Au-Cu-Ag	Ε, Τ
170	33102		Ressources Golden Tag Itée / Ressources Sirios inc.	Aquilon Main	Au	S (x:1400), TM
						res à une once d'or sur la veine Lingo nètres, répartis sur une longueur de
1 <i>7</i> 1	33H15	•	Stornoway Diamond Corporation / Mines Virginia inc./ SOQUEM INC. / Mines Aurizon Itée	LG-4 Diamants Consorem	Diamant	Gc(t), GpMa(S), Pg
172	23K13		Mines Virginia inc.	Lac Pau	Au	E, G, GpEl(S), GpMa(S), S (28:3612), T
			Description du projet : Mise en év tonalitiques altérées et cisaillées et 6 3,91 g/t Au sur 5,0 m en 2010.	ridence d'un systèn contenant plusieurs	ne aurifère suivi s s indices de surfac	ur plus de 12 km à l'intérieur d'intrusions ce dont l'indice Hope qui a retourné
GRAN	ID NORD (figur	e 4.1)				
173	33K16, 33N01, 02		Niocan inc.	Hudson Bay Great Whale Iron	Fe	TM
1 <i>7</i> 4	23K13, 23L16, 23M01		Ressources Sirios Inc.	Cognac	Au-Cu-Ag- Zn-Pb	Pg
1 <i>7</i> 5	34102, 03		Mines Virginia inc. / Fonds d'exploration minière du Nunavik	Vizien	Au-Ag-Cu-Zn	Pg
176	34P11, 14		Mines Virginia inc. / Fonds d'exploration minière du Nunavik	Pélican	Au-Ag-Cu-Zn	Pg
1 <i>7</i> 7	23M15, 16		Fission Energy Corporation	Dieter	U	S(x:x)
178	34O07, 10, 11, 14, 15		Exploration Azimut inc./ Mines Aurizon Itée	Rex Sud	Cu-Au-Ag-W- Zn-Mo	E, Gc(l), GpMa(A), GpRa(A), Pg
			Description du projet : La coentre Breuil) en cuivre-or-argent-tungstèn métavolcaniques mafiques cisaillées	e-molybdène-zinc	par échantillons o	nes minéralisées (Augossan, Larissa et Le choisis en surface, associées à des roches ques, pegmatitiques, aplitiques.
179	34G12, 24F02, 04, 23C11, 12, 13, 14, 15, 24C04, 12, 24J10, 23M06, 11, 14, 24D14, 23D16, 24E01,		Exploration Azimut inc./ Kativik Resources Inc.	Kativik	U-ÉTR	E, Pg

NO	CNIDC CANTONIC	ion dans la région administrative du N		SUBSTANCES	TRAVAUX
~~~	SNRC CANTONS	The state of the s	PROJETS	SUBSTAINCES	II KAVAUX
	GÈNE DU NOUVEAU-QUÉB	7 A	<u> Alto Koley, Jajas ()</u>	<u> </u>	
180	23O03	New Millennium Capital Corporation	KéMag	Fe	GpMa(A), GpGr(A)
181	23O03, 23J14, 15	New Millennium Capital Corporation / Tata Steel Minerals Canada Ltd	DSO	Fe	E, Gc, GpMa(A), GpGr(A), S (x:x)
182	23O03	Ressources Beaufield inc.	Shefferville	Au-Zn-Fe	GpEm(A), GpGr(A), GpMa(A), GpRa(A
183	23O03, 05, 06	0849873 BC Ltd	Lac Rainy	Fe	S (x:x)
184	23003, 06	0849873 BC Ltd	Lac de Fer	Fe	S (x:x)
185	23O04, 05, 23J13, 14	Western Troy Capital Resources Inc. / Rockland Minerals Corporation	Sheffferville Gold	Au-Ag-Zn-Pb	E, G, Gc, Pr, S (12:1525)
		Description du projet : À 50 km a compagnie a rapporté deux interva retourné 6,63 g/t Au sur 1,20 mètr	illes aurifères en fo.	rage sous l'indice .	Arsène. Ainsi, le sondage RL10-17 a
186	23P05	Western Troy Capital Resources Inc.	Lac Deborah	Cu-Au-Ni	E, GpEm(A), Pg, T
	<u> </u>	<b>Description du projet :</b> Western T 5,74 % Cu et 6,4 g/t Au en échanti			plusieurs valeurs en cuivre allant jusqu h.
187	23O03	Western Troy Capital Resources Inc. / Key Cold Holdings	Franelle Copper	Cu	E, Pg
188	23P04, 23O01, 08	Western Troy Capital Resources Inc. / Match Capital Resources Corporation	Lac Indian	Cu-Zn-Au-Ag- Ni-ÉGP	E, Pr, T
189	23N16, 24C01, 02	Ressources Adriana inc.	Lac Otelnuk	Fe	E, Env, G, \$ (40:5680), TM
		<b>Description du projet :</b> Au début tonnes à 29,08 % Fe et des ressour	2010, la zone Sud ces présumées de	contient des resso 1,97 milliard de to	urces indiquées de 4,29 milliards de onnes à 29,24 % Fe
190	34K04, 05, 24F13, 14	Canadian Royalties Inc.	Gerido	Ni-Cu-Co-ÉGP	G, GpEm(A), GpMa(A), Pg
191	24C15, 16, 24F01	Commerce Resources Corporation	Eldor	ÉTR-Ta-Nb-U-F	E, G, GpEm(S), Pr, S (21:5390), T
		<b>Description du projet :</b> Le sondag à l'intérieur de la zone Ashram.	e EC10-046 a reto	urné 2,02 % ÉTR2	O3 sur 303,42 mètres (55,15-358,57 m
ORO	GÈNE DE L'UNGAVA (figure	4.0			
192	35G, 35H	Goldbrook Ventures Inc. / Jilin Jien Nickel Industry Co. Ltd	Raglan	Ni-Cu-Co-ÉGP	E, G, Gc(h), Gc(ru), Gc(s), Gc(t), GpEm(F), GpMa(S), Pr, S (131:23075)
		,	· ·		
		(sondage ECH10-021 : 0,46 % Ni, coentreprise a estimé des ressource 0,32 g/t Pt et 1,31 g/t Pd sur les dé	0,93 % Cu, 0,03 % es indiquées de 5,6 pôts Bravo, Getty, I	6 Co, 3,93 g/t ÉGP 4 Mt à 0,60 % Ni, Mystery, Pad, Timt	dans le Complexe ultramafique Echo + Au sur 21,00 mètres). De plus, la , 0,66 % Cu, 0,03 % Co, 0,07 g/t Au, u et Sylvie, et des ressources présumées et 1,27 g/t Pd sur les dépôts Bravo,
193	35C09, 35H11, 12	(sondage ECH10-021 : 0,46 % Ni, coentreprise a estimé des ressource 0,32 g/t Pt et 1,31 g/t Pd sur les dé de 1,77 Mt à 0,56 % Ni, 0,55 % Co	0,93 % Cu, 0,03 % es indiquées de 5,6 pôts Bravo, Getty, I	6 Co, 3,93 g/t ÉGP 4 Mt à 0,60 % Ni, Mystery, Pad, Timt	+ Au sur 21,00 mètres). De plus, la . 0,66 % Cu, 0,03 % Co, 0,07 g/t Au, u et Sylvie, et des ressources présumées
193 <b>194</b>		(sondage ECH10-021 : 0,46 % Ni, coentreprise a estimé des ressource 0,32 g/t Pt et 1,31 g/t Pd sur les dé de 1,77 Mt à 0,56 % Ni, 0,55 % Coetty et Mystery.  Xstrata Canada Corporation	0,93 % Cu, 0,03 % es indiquées de 5,6 pôts Bravo, Getty, 1 1, 0,03 % Co, 0,06 Mine Raglan	o Co, 3,93 g/t ÉGP 4 Mt à 0,60 % Ni, Mystery, Pad, Timt g/t Au, 0,29 g/t Pt	+ 'Au sur 21,00 mètres). De plus, la , 0,66 % Cu, 0,03 % Co, 0,07 g/t Au, u et Sylvie, et des ressources présumées et 1,27 g/t Pd sur les dépôts Bravo,
	35H11, 12	(sondage ECH10-021 : 0,46 % Ni, coentreprise a estimé des ressource 0,32 g/t Pt et 1,31 g/t Pd sur les dé de 1,77 Mt à 0,56 % Ni, 0,55 % Coetty et Mystery.  Xstrata Canada Corporation - Xstrata Nickel Canada Division  Canadian Royalties Inc. / Jien	0,93 % Cu, 0,03 % es indiquées de 5,6 pôts Bravo, Getty, lu, 0,03 % Co, 0,06  Mine Raglan  Nunavik Nickel Mine	o Co, 3,93 g/t ÉGP 4 Mt à 0,60 % Ni, Mystery, Pad, Timt g/t Au, 0,29 g/t Pt Ni-Cu-Co-ÉGP	+ Au sur 21,00 mètres). De plus, la . 0,66 % Cu, 0,03 % Co, 0,07 g/t Au, u et Sylvie, et des ressources présumées et 1,27 g/t Pd sur les dépôts Bravo,  CpEm(F), S (205:42500)  E, G, GpEm (F,S), GpMa(S), Pr, S (120:20500)

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
		CANTONS				
196	35F08, 35G05, 06		Anglo American Exploration (Canada) Ltd / Knight Resources Ltd	West Raglan	Ni-Cu-Co- ÉGP-Zn-Au	E, G, GpEm(F,S), GpMa(S), Pr, S (21:4998)
			<b>Description du projet :</b> Le sondage sulfures massifs titrant 1,70 % Cu, 3			ection de 3,2 mètres (69,6-72,8 m) de nité de basalte.
197	25C04, 25D01, 08		Mines Virginia inc. / Anglo American Exploration (Canada) Ltd	Baie Payne	Ni-Cu-Co-ÉGP	G, Pg
ORO	GÈNE DES TOR	NGAT ET ZON	E NOYAU (figure 4.1)			
198	24A08		Quest Rare Minerals Ltd	Lac Strange	ÉTR-Zr-Nb-Be	E, Er, ET, G, Gc(ro), S (82:16000), T, TM
						e, des ressources présumées de 115 Mt BeO. Réalisation d'une étude technico-
199	13M05		à 1,0 % ÉTR ₂ O ₃ , 1,97 % ZrO ₂ , 0,21			
199	13M05 24A01, 08, 14D04, 05, 13M12, 13, 13L13		à 1,0 % ÉTR $_2$ O $_3$ , 1,97 % ZrO $_2$ , 0,21 economique.	% Nb₂O₅, 0,05 %	HfO ₂ et 0,08 % E	GeO. Réalisation d'une étude technico-
	24A01, 08, 14D04, 05, 13M12, 13,		à 1,0 % ÉTR ₂ O ₃ , 1,97 % ZrO ₂ , 0,21 économique.  Quest Rare Minerals Ltd  Exploration Midland inc. / Japan Oil, Gas and Metals National Corporation	% Nb ₂ O ₅ , 0,05 %  Lac Misery  Ytterby	HfO ₂ et 0,08 % E ÉTR-Zr-Nb- Ti-Fe ÉTR	G. G. Réalisation d'une étude technico- G, G.C.(t), GpMa(S), Pr, S (8:1200) E, Emi, G.C.(ro), G.C.(t), GpMa(A,S),
	24A01, 08, 14D04, 05, 13M12, 13,		à 1,0 % ÉTR ₂ O ₃ , 1,97 % ZrO ₂ , 0,21 économique.  Quest Rare Minerals Ltd  Exploration Midland inc. / Japan Oil, Gas and Metals National Corporation  Description du projet : Découverte	% Nb ₂ O ₅ , 0,05 %  Lac Misery  Ytterby	HfO ₂ et 0,08 % E ÉTR-Zr-Nb- Ti-Fe ÉTR	GeO. Réalisation d'une étude technico- G, Gc(t), GpMa(S), Pr, S (8:1200)  E, Emi, Gc(ro), Gc(t), GpMa(A,S), GpRa(A,S), Pr
200	24A01, 08, 14D04, 05, 13M12, 13, 13L13		à 1,0 % ÉTR ₂ O ₃ , 1,97 % ZrO ₂ , 0,21 économique.  Quest Rare Minerals Ltd  Exploration Midland inc. / Japan Oil, Gas and Metals National Corporation  Description du projet : Découverte Ytterby 2 et Ytterby 3.	% Nb ₂ O ₅ , 0,05 %  Lac Misery  Ytterby  e de nouvelles zon	HfO ₂ et 0,08 % E ÉTR-Zr-Nb- Ti-Fe ÉTR	GeO. Réalisation d'une étude technico- G, Gc(t), GpMa(S), Pr, S (8:1200)  E, Emi, Gc(ro), Gc(t), GpMa(A,S), GpRa(A,S), Pr  e terres rares (ÉTR), sur les propriétés

^{1.} Voir légende et signification des caractères gras et en italique à l'annexe 2.

NO	AU 4.4 - Proje SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROIETS	SUBSTANCES	TRAVAUX
	The second second second	on 08 : Secteur Va	the second of th			
1 1	31N14	Villebon	LiteWave Corporation / Métaux	Villebon	Au-Pt-Ni-Cu	S (32:2000)
	JINIT	VIIICDON	de base et platine St-Georges Itée / Fancamp Exploration Ltd / Sheridan Platinum Group Ltd	Vinesore	712 TETTI GU	5 (32.2000)
2	32B04, 05	Baudin, Bourgmont	Ressources Cartier inc.	Decorta	Au-Cu-Zn-Ag	ET, Pr, S (x:x), T
3	32B04, 05, 32C01	Baudin, Trevet	Ressources Cartier inc.	Cadillac Extension	Au-Cu-Zn-Ag	E, Pr
			<b>Description du projet</b> : Un prograt Ag-Au) a mis à jour un horizon enri meilleures rainures, il y a 7,68 g/t A	chi en or-argent de	e 3 m d'épaisseur	polymétallique Langlade (Zn-Cu- sur 120 m de longueur. Parmi les
4	32B11,12	Deschamps, Juneau, Hanotaux	Ressources Threegold inc.	Mercier	ÉTR	S (14:3112)
	•	Tanouax	<b>Description du projet :</b> Dans le co renfermant des concentrations en to			
5	32B13	Barry, Souart	Exploration Amseco Itée	Urban South	Au	GpEl(S), GpMa(A)
6.	32B13	Souart, Barry	KeyGold Holding Inc. / Rivercrest Resources Inc. / Glen Eagle Resources Inc.	Souart	Au	Er, ET
7	32B13, 32G04	Bailly, Barry	BonTerra Resources Inc. / Ressources Abitex inc.	Eastern Extension	Au	S (7:958)
+ 2			<b>Description du projet :</b> Les forages fumé et sulfures recoupant des roch BA-10-03 a obtenu 12,7 g/t Au sur	nes altérées (silice,	zones minéralisé carbonate, chlorit	es, composées de veines de quartz te, tourmaline et séricite). Le sondage
8	32B13, 32G04	Barry	BonTerra Resources Inc. / North American Exploration Ltd	Urban - Barry (Lac Barry)	Au	G, GpMa(A,S), Pr, S (3:567)
9	32B13, 32G04	Barry, Urban	Ressources Métanor inc.	Mine Barry	Au	Er, ET, GpEl(S), GpMa(S), S (x:3200)
			<b>Description du projet :</b> Un nouvea West, 43 et 45, indique des ressour 10,41 Mt à 1,41 g/t Au à une teneu	ces indiquées de 7	7,70 Mt à 1,25 g/t	Au et des ressources présumées de
10	32C01	Pétain, Esperey	Les Investissements Pierre et Mica inc.	Lac Néron 002	Au-Ag-ÉGP	Gc(ro,s), T
11	32C02	Tavernier, Pershing	Ressources X-Ore inc.	Lac Tavernier	Au-Zn-Pb- Cu-Ag	GpEf(S)
12	32C02	Tavernier, Pershing, Haig, Jurie	Ressources Aurtois inc.	Stella	Au	ET
13	32C02, 03	Pershing	Forest Gate Energy Inc.	Pershing	Au	ET
14	32C02, 03	Tavernier, Pershing	Exploration First Gold inc. / Ressources Brionor inc.	Matchi-Manitou	Cu-Zn-Ag-Au	S (5:x)
				age MM10-03 a re	coupé une structi	anomalies électromagnétiques au sein ure silicifiée, pyritisée et injectée de fères dont 6,57 g/t Au sur 1 m.
15	32C03	Louvicourt	Corporation Minéraux Alexandria	Sleepy	Au	S (3:x)
	32C03	Louvicourt	Corporation Minéraux Alexandria	Trivio	Au	S( 14:x)
16	02000					
16 17	32C03	Louvicourt	Mines Richmont inc. / SOQUEM INC.	Monique	Au	Pr, S (10:2000)

	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
19	32C03	Pascalis, Vauquelin	Mines de la Vallée de l'Or Itée	Pascalis Cu-Zn	Cu-Zn-Ag	E, Pr, G, Gp(S), S (5:684)
	•					sondage a recoupé une zone riche en nc (0,3 % Cu et 0,2 % Zn sur 1,55 m).
20	32C03	Pershing	Ressources X-Ore inc. / Exploration First Gold inc.	Croinor 1	Au	ET, GpEm(F), S (x:2794)
	.,		durée de vie 5 ans, réserves prouve d'or. Obtention du certificat d'auto	ées+probables : 66 prisation du MDDE	89 829 t à 8,35 <i>g/</i> EP qui permet le d	: Scénario prévu : production 500 tpj, t Au pour un total de 180 629 onces énoyage de la mine et le début des s la zone W-West Pit ont recoupé des
			intersections aurifères situées près recoupé le prolongement en profor	de la surface (2,23 deur de lentilles co 23 zones distincte:	g/t Au sur 4,0 m; onnues, tel que 5,7 s et est formée de	s la zone vi-vvest Fit Ont recoupe des sondage CR-10-369). Des forages ont 7 m à 29,3 g/t Au (sondage CR-10-376). veines de quartz et de leurs épontes
21	32C03	Vauquelin	Plato Gold Corporation / Entreprises minières Globex inc.	Nordeau	Au	ET, \$ (3:836)
			Description du projet : Le sondag minéralisée au sein d'une formatio quartz-sulfures (arsénopyrite-pyrite	n de fer riche en n	oupé une section c nagnétite. La miné	de 1 m à 4,51 g/t Au dans une zone éralisation est formée de veines de
22	32C03	Vauquelin	Corporation minière Golden Share	Forsan	Au	ET, GpEl(S), Pr, S (4:546)
23	32C03	Vauquelin	Ressources Threegold inc. / P.T. Coyle	South Bay	Au	E, S (5:205), T
24	32C03	Vauquelin	Galahad Metals Inc.	Regcourt	Au	ET, S (9:2500)
25	32C03	Vauquelin	Blue Note Mining Inc. / Ressources X-Ore inc.	Chimo	Au	S (x:1037)
				la zone 2 Ouest, le		des zones aurifères 2 Ouest et 6P de 01 a recoupé 4 horizons minéralisés,
26	32C03	Vauquelin	170364 Canada Inc.	Rayon d'Or	Au-Ag	ET, GpMa(S)
27	32C03, 04	Bourlamaque, Louvicourt	Corporation minière Alexis	Dunraine	Ag-Au-Zn	ET, GpEm(S)
28	32C03, 04	Louvicourt	Corporation minière Alexis / Novicourt Inc.	Louvex	Métaux usuels	GpEm(F,S), Pr, S (3:2857)
			<b>Description du projet :</b> Le sondage verticale entre 1000 et 1350 m. Par	e profond 17314-1 mi les meilleurs in	11 a recoupé la zo itersections minéra	ne Deep West à une profondeur alisées, il y a 0,40 % Cu sur 37,4 m.
			Ressources X-Ore inc.	Pascalis	Au	G, Pr
9	32C03, 04	Pascalis				
	32C03, 04 32C03, 04	Pascalis Pascalis, Louvicourt	Adventure Gold Inc.	Pascalis- Colombière	Au	Er, \$ (2:625)
29 30		Pascalis,	Adventure Gold Inc.  Description du projet : Les meillet minéralisée de 0,8 g/t Au sur 13,4 t	Colombière irs résultats compr	ennent 8,2 g/t Au	sur 1,0 m au sein d'une zone
_		Pascalis,	Description du projet : Les meille	Colombière irs résultats compr	ennent 8,2 g/t Au	sur 1,0 m au sein d'une zone
30	32C03, 04	Pascalis, Louvicourt	Description du projet : Les meilleu minéralisée de 0,8 g/t Au sur 13,4 r	Colombière irs résultats compr n (sondage PC-09- Mégiscane-	ennent 8,2 g/t Au -08), logée dans u	sur 1,0 m au sein d'une zone n dyke de gabbro.
30	32C03, 04 32C03, 06	Pascalis, Louvicourt Tiblemont, Tavernier	<b>Description du projet :</b> Les meiller minéralisée de 0,8 g/t Au sur 13,4 r Adventure Gold Inc.	Colombière urs résultats compr n (sondage PC-09- Mégiscane- Tavernier  Orenada  Complexe Lamaque	ennent 8,2 g/t Au -08), logée dans u Au-Cu Au	sur 1,0 m au sein d'une zone n dyke de gabbro. ET, GpMa(S), Pr S (20:x) EF, Ev (20 000:x), S (x:45 000/3ans)

	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
34	32C04	Bourlamague	Corporation minière Alexis	Mine Lac Herbin	Au	S (x:x)
			les réserves de la mine à 617 374 t minimum de 5 années. L'usine de t démarré le 25 février 2010. Sous fo dans 7 cisaillements (HW, WE, HW	à 7,36 g/t Au. La d raitement Aurbel, s orme de veines auri /2, Bonanza, \$3, LF	urée de vie de la située à moins d' fères de quartz-p 1 et \$1) recoupar	un km de la mine Lac Herbin, a pyrite, la minéralisation est encaissée
35	32C04	Bourlamaque	Kalahari Resources Inc.	Lamaque	Au	Er, ET, S (66:17 479)
			Description du projet : Une camp de recouper plusieurs systèmes de recoupent des volcanites mafiques 2,3 m (TM-09-02-A) pour la zone	veines aurifères de et des intrusions de	quartz-tourmalir diorite. Les mei	ie, logés dans des cisaillements qui lleures valeurs incluent 10,85 g/t Au su
36	32C04	Bourlamaque	Corporation minière Alexis	Manitou	Au	GpEm(F,S), Pr, S (4:3773)
37	32C04	Bourlamaque	Corporation minière Alexis	Annamaque	Au	ET, GpEm(S)
38	32C04	Bourlamaque	Corporation minière Alexis	Faraday	Au	ET, GpEm(S)
39	32C04	Bourlamaque, Senneville	Corporation minière Alexis	Aurbel	Au-Ag	ET, GpEm(F), <b>S</b> (24:10 050)
40	32C04	Dubuisson	Exploration Knick inc.	East-West	Au	E, G, GpEm(F), Pr, T
			<b>Description du projet :</b> Décapage des gabbros, des porphyres feldspa multiples horizons minéralisés (10,1)	thiques et des volca	anites intermédia	
41	32C04	Dubuisson	Mines d'Or Wesdome Itée	Complexe Kiena	Au	S (94:40 876)
			Nord, 388 et \$-50. Les forages d'ex	kploration souterrai	ns, totalisant 19 (	totalisant 24 000 m, sur les zones VC, 000 m, vont tester le prolongement dans la zone S50, le forage U4928 a
42	32C04	Dubuisson	Mines Agnico-Eagle Itée	Goldex	Au-Ag	Pr, S (109:38 000)
			présentement exploitée, afin de co située en profondeur, sous la zone	nvertir les ressource GEZ, ont retourné cone M, située à l'o	es en réserves. De des valeurs attei	formant l'extension est de la zone GEZ es forages d'exploration dans la zone E gnant 2,04 g/t Au sur 160,5 m (sondag GEZ, est en cours. La production de
43	32C04	Dubuisson	Mines d'Or Wesdome Itée	Dubuisson	Au	S (x:27 000)
			comprennent 10,3 m à 26,1 g/t Au	ilisation est formée phyres feldspathiqu . Une galerie à 330	de veinules de q es fracturés. Les m de profondeu	uartz-albite-tourmaline-pyrite au meilleurs résultats, obtenus en 2009,
			atteindre la zone. Des forages de si	urtace sont prévus s	ur la zone.	
44	32C04	Dubuisson	atteindre la zone. Des forages de su Adventure Gold Inc. / Mines Agnico-Eagle Itée	Dubuisson	ur la zone. Au	ET
	32C04 32C04	Dubuisson Dubuisson	Adventure Gold Inc. /	•		ET S (95:x)
45			Adventure Gold Inc. / Mines Agnico-Eagle Itée	Dubuisson	Au	
45 46	32C04	Dubuisson	Adventure Gold Inc. / Mines Agnico-Eagle Itée Mines d'Or Wesdome Itée	Dubuisson  Kiena Bloc Sud	Au Au	S (95:x)
45 46 47	32C04 32C04	Dubuisson Dubuisson,	Adventure Gold Inc. / Mines Agnico-Eagle Itée Mines d'Or Wesdome Itée Corporation minière Niogold Corporation Minéraux Alexandria /	Dubuisson  Kiena Bloc Sud  Val d'Or  Siscoe Est /	Au Au	S (95:x) ET
45 46 47 48	32C04 32C04 32C04	Dubuisson Dubuisson, Vassan Dubuisson,	Adventure Gold Inc. / Mines Agnico-Eagle Itée Mines d'Or Wesdome Itée Corporation minière Niogold Corporation Minéraux Alexandria / Corporation minière Niogold	Dubuisson  Kiena Bloc Sud  Val d'Or  Siscoe Est /  Vassan	Au Au Au	S (95:x) ET ET
45 46 47 48	32C04 32C04 32C04 32C04	Dubuisson Dubuisson, Vassan Dubuisson, Vassan Vassan	Adventure Gold Inc. / Mines Agnico-Eagle Itée Mines d'Or Wesdome Itée Corporation minière Niogold Corporation minière Niogold Corporation minière Niogold Mines d'Or Wesdome Itée Adventure Gold Inc. Description du projet : Nouveau of	Dubuisson  Kiena Bloc Sud  Val d'Or  Siscoe Est / Vassan  Wesdome  Lapaska calcul de ressourcesour la zone Lapaska	Au Au Au Au Au aprésumées de 2	S (95:x)  ET  ET  S (x:5000)  Er  20 000 t à 3,14 g/t Au, en utilisant une éralisation est associée à des veines de
44 45 46 47 48 49	32C04 32C04 32C04 32C04	Dubuisson Dubuisson, Vassan Dubuisson, Vassan Vassan	Adventure Gold Inc. / Mines Agnico-Eagle Itée Mines d'Or Wesdome Itée Corporation minière Niogold Corporation Minéraux Alexandria / Corporation minière Niogold Mines d'Or Wesdome Itée  Adventure Gold Inc.  Description du projet : Nouveau de teneur de coupure de 2,0 g/t Au, p	Dubuisson  Kiena Bloc Sud  Val d'Or  Siscoe Est / Vassan  Wesdome  Lapaska calcul de ressourcesour la zone Lapaska	Au Au Au Au Au aprésumées de 2	S (95:x)  ET  ET  S (x:5000)  Er  20 000 t à 3,14 g/t Au, en utilisant une éralisation est associée à des veines de

			dans la région administrative de l'A		·	on figures in the second,
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
51	32C04	Louvicourt	Corporation Minéraux Alexandria	Lourmet	Au	S (8:x)
52	32C04	Louvicourt	Corporation Minéraux Alexandria	Bloc Sud Ouest	Au	S (13:x)
53	32C04	Louvicourt, Bourlamaque	Corporation Minéraux Alexandria	Akasaba	Au-Ag-Cu	E, G, GpEm(F), S (54:18 700), T
		•	<b>Description du projet :</b> Un fait ma d'horizons minéralisés à faible teneu Il y a également des intersections p	ır sur de larges épai	sseurs, tel que 2,0	01 g/t Au sur 78,77 m (forage IAX-10-72
54	32C04	Louvicourt, Bourlamaque	Corporation Minéraux Alexandria	Sabourin	Au-Ag-Cu	S (20:x)
55	32C04	Pascalis	Mines Richmont inc. / La Société minière Louvem inc.	Mine Beaufor	Au-Ag	S (x:55 604)
			les meilleurs résultats il y a 5,30 m	tensions des zones à 29,69 g/t Au dans	W, 350 et 367, i s la zone W (sond	ent été complétés en date du 21 toutes situées au sud de la mine. Parmi lage 80-44) et 0,95 m à 23,57 g/t Au e de veines de quartz-tourmaline-pyrite
56	32C04	Senneville	Mines de la Vallée de l'Or Itée	Lac Laverdière	Au	E, G, Gp(S), Pr, S (2:235)
57	32C04, 32D01	Dubuisson, Fournière	Corporation minière Northern Star	Midway (Malartic Goldfields)	Au	Galerie, cheminée, Er, ET, EV (6000:x), S (x:x)
						exploration jusqu'à l'arrêt des travaux g/t Au sur 9,23 m; forage MU 225W-2)
58	32C04, 32D01	Malartic, Fournière, Dubuisson, Vassan	Corporation minière Niogold / Mines Aurizon Itée	Bloc Marban	Au	S (45:13 674)
59	32C04, 32D01	Vassan, Malartic	Corporation minière Northern Star	Callahan	Au	S (14:4150)
60	32C04, 32D01	Vassan	Stellar Pacific Ventures Inc.	Vassan	Au	Er, S (x:x)
61	32C05	Fiedmont	Corporation minière Animiki Itée			Т
62	32C05	Fiedmont	Corporation minière Northern Star / Britannica Resources Corporation	McKenzie-Break	Au	Rampe, Er, ET, Ev(x:x), S (x:6000)
				squ'à l'arrêt des tra	vaux au mois de	ns la zone Murray à une profondeur juin 2010. Les meilleures intersections
63	32C05	La Corne	Canada Lithium Corporation	Québec Lithium	Li	EF, Er, EV (20:x), TM, S (49:6724)
			Description du projet : Nouveau cindiquées de 46,67 Mt à 1,19 % Li ₂ teneur de coupure de 0,80 % Li ₂ 0. été complétés en 2010. Le scénario de 2950 tpj, début de la productior possibilité jusqu'à 30 ans.	O et des ressource: Les tests métallurgi prévu comporte l'é	s présumées de 5 ques et les étude exploitation d'un	7,58 Mt à 1,18 % Li ₂ O, pour une s de préfaisabilité et de faisabilité ont e fosse à ciel ouvert avec production
64	32C05	La Corne	Mineral Hill Industries Ltd	Chubb	Li	Gc(ro), GpEm(S)
			<b>Description du projet :</b> L'échantillo 0,01-2,84 % Li ₂ O, avec une moyen		es de pegmatite à	spodumène a rapporté des valeurs de
65	32C05	La Corne	Glen Eagle Resources Inc. / S. Lebianc	Glen Eagle	Li	ET
66 -	32C05	La Corne, Landrienne	Mineral Hill Industries Ltd	Canadian Lithium	Li	E, ET, G, GpEl, GpMa, S (15:x), T, TM
_		Latiatienite				

		· · · · · · · · · · · · · · · · · · ·	ans la région administrative de l'A			
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS		SUBSTANCES	TRAVAUX
68	32C05	Landrienne	J. Frigon	Landrienne	Ni	S (1:x)
69	32C05	Landrienne	Ressources Cogitore inc.	Landrienne	Métaux usuels	ET, Gc(ro)
70	32C05	Landrienne	Mineral Hill Industries Ltd	Athona	Mo	Gc(ro)
			<b>Description du projet :</b> Au nord d roches sédimentaires et volcanique	u Pluton Lacorne, l s, a rapporté des va	échantillonnage aleurs entre 0 et :	de dykes d'albitite, recoupant des >1,69 % MoS ₂ .
71	32C05, 06	Carpentier	Ressources Abitex inc.	Jolin	Au	Er
72	32C05,.06	Courville	Mines de la Vallée de l'Or Itée / Kalahari Resources Inc.	Perestroika	Au	ET, S (2:495)
			intervalles aurifères, associés à des	volcanites mafiques aleurs en or, telles o	s cisaillées et altér	e, deux forages ont recoupé de multiple rées, recoupées par des intrusions de sur 3,05 m (sondage GPS09-02) sont
73	32C05, 12	Barraute, Carpentier	Laurentian Goldfields Ltd	Abitibi Greenstone Belt	Au	E, P, Gc(I,ro,ru)
74	32C05, 32D08	Malartic, La Motte, La Corne, Vassan	Romios Gold Resources Inc.	La Corne Molybdenum	Mo-Li	ET, S (5:1000)
75	32C06	Carpentier	Titan Resources International Inc.	Cooper Gold	Äu	ET, G, Gc(ro,s), GpEm, GpMa, Pr
76	32C06	Carpentier	D. Ferberber			S (x:x), T
77	32C06	Courville	Laurentian Goldfields Ltd	Belcourt	Au	ET, G, Gc(ro,s)
			en bordure d'un dyke felsique por régionale.	nnent des teneurs e ohyrique, altéré en	n or atteignant 4 séricite et carbon	,23 g/t Au. Les échantillons sont situés ates, à l'intérieur d'une zone de faille
78	32C06	Courville	Ressources Pershimco inc.	Courville	Au -Tonalite	ET, G
79	32C06	Tiblemont	Les Explorations Carat inc. / J. Robert	· 		T
80	32C11	Ducros, Bartouille	Mines de la Vallée de l'Or Itée			S (3:x), T
81	32C11	Rochebeaucourt	3421856 Canada Inc. / R.Tremblay / A. Beaudoin / R. Lamothe	Charlemagne	Au	E, G, Pr, T
82	32C11, 12, 13, 14	Despinassy, Rochebeaucourt	Pacific North West Capital Corporation / Alto Ventures Ltd	Destiny	Au	Er, Gc(s), GpEm(F), GpMa(A), S (8:3384)
			<b>Description du projet :</b> Les meille le gite DAC, formé de veines de qu	urs résultats compre uartz aurifères inject	ennent 8,46 g/t A tées dans de large	u sur 3,0 m (sondage DES10-137) dans es zones de cisaillement.
33	32C12	Barraute	Mines Abcourt inc.	Abcourt-Barvue	Ag-Zn	S (15:4000)
84	32C12	Barraute	Ressources Threegold inc. / A. Beaudoin	Barraute	Au	ET
85	32C12	Düverny	Tres-Or Resources Ltd / Sementiou Inc. / Entreprises minières Globex inc. / Mines Aurizon Itée	Duvay	Au	E, Er, ET, G, GpMa(S), Pr, T
			<b>Description du projet :</b> Dix-neuf r 4,02 m (échantillons 36937-36941	ainurages ont été e ) et 0,64 g/t sur 8,0	ffectués. Les deux m (échantillons 3	c meilleurs résultats sont 3,56 g/t Au sui 36947-36954).
	32C12	Duvernay	Tres-Or Resources Ltd / Sementiou Inc.	East Mac	Au	E, G, Pr
86		Duverny,	Mines Aurizon Itée	Duvernay	Au	E, Gc(s), Pr
86  87	32C12	Castagnier, La Morandière			·	· 

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
89	32C12	Duverny, Dalquier	Tres-Or Resources Ltd / Sementiou Inc. / J. Mongrain / H. Lessard / C. Perron	Duvay Nord	Au	СрМа(S)
90	32C12, 13	Vassal, La Morandière	Alto Ventures Ltd	Vassal	Au-Métaux usuels	GpEm(S), S (6:1200)
91	32D01	Fournière	Corporation Minière Osisko	Extension Barnat	Au	S (80:18 000)
			roches ultramafiques altérées et cisa de Cadillac dans les sédiments du F	· Cadillac et est en aillées. L'extension Pontiac. Les roches	globée dans un po sud (zone Mamm s hôtes sont des in	orphyre minéralisé, encaissé par des
92	32D01	Fournière	Corporation Minière Osisko	Canadian Malartic	Au	Er, S (192:38 716)
			du mur vert, le prédécapage et les t Un nouveau calcul de réserves com	ravaux d'installati iprenant les gisem	on des équipemer ents Canadian Ma	on et du garage est terminée. L'érection its à l'usine de traitement sont en cours. lartic et Barnat Sud, a établi les réserves lébut de la production est prévu pour
93	32D01	Fournière	Corporation Minière Osisko / Mines de la Vallée de l'Or Itée	Malartic CHL, Zone Jeffrey	Au	S (142:27 326)
			Description du projet : Programme le porphyre CHL. Parmi les résultats zone Jeffrey.			effrey, Shaft, Mammouth ainsi que dans 2 m (sondage CHL10-2240) dans la
94	32D01	Fournière	Corporation Minière Osisko	Western Porphyry Zone	Au	S (82:21 000)
			Description du projet : La minérali recoupant des intrusions porphyriqu carbonate est présente. Les meilleurs	ues, des basaltes e	t des ultramafites.	
95	32D01	Malartic	Corporation minière Golden Share	Malartic Lakeshore	Au	ET, G
			<b>Description du projet :</b> À l'intérieu riches en dykes de porphyres feldsp quartz-tourmaline-pyrite. La meilleu chalcopyrite.	athiques altérés (s	ilice, séricite et hé	matite), recoupées de veines de
96	32D01	Malartic	Ressources d'Arianne inc.	Héva Est	Au	E, Pr, T
97	32D01	Malartic	Exploration Amseco Itée / Les Mines J.A.G. Itée	Malartic Rivière Héva	Au-Métaux usuels	E, GpEl(S), GpMa(S)
98	32D01	Malartic	Savant Exploration Ltd / Entreprises minières Globex inc.	Parbec	Au	ET, S (8:4005)
			Description du projet : Dans la Zor minéralisation aurifère (zone Centra ultramafiques déformées (28,6 m à	l Veins) logée dan	s une intrusion po	rphyrique altérée et des roches
9	32D01	Malartic, Fournière	Corporation minière Niogold / Mines Aurizon Itée / Ressources Thundermin inc. / Corporation minière Northern Star / Ressources Breakwater Itée	Bloc Malartic	Au	Er,ET,S (62:13 031)
			à 1,26 g/t (présumées); et 2) ressour 3,96 g/t Au (indiquées) et 0,58 Mt à Mt à 4,55 g/t Au et ressources présu	n, teneur de coupu ces en profondeui 3,88 g/t Au (présu mées de 0,87 Mt	re de 0,5 g/t) : 5,9 : r (200-630 m, tene imées). Au gîte Ma à 4,08 g/t Au (tene	Mt à 1,59 g/t Au (indiquées) et 4,4 Mt eur de coupure de 2,5 g/t) : 0,9 Mt à arban : ressources indiquées de 1,24
			Zone de disamement Marbenne, a 450		, o	10 00 0 m 10 00 m po = 0, = 8, 10 0 m 1, = 1111
00	32D08	Figuery	Mineral Hill Industries Ltd	International	Li	Gc(ro), GpEm(S), GpMa(S)

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	oir figures 4.4, 4.5 et 4.6). TRAVAUX
101	32D08	La Motte	Glen Eagle Resources Inc. / Entreprises minières Globex inc.	LaMotte Lithium (Authier Lithium)	Li	EF, ET, GpMa, S (17:1900)
			<b>Description du projet :</b> Des sonda (53,5 m à 1,3 % Li ₂ O, 1 388 ppm l	ges ont recoupé, à		r, des dykes de pegmatite à spodumène 11).
102	32D09	Dalquier	Mines Abcourt inc.	Jonpol	Métaux usuels	S (2:xx)
			Description du projet : À proximi a recoupé une large zone minéralis contient 4 minces horizons plus ric	sée (26,98 m à 0,15	i % Cu, 1,21 % Z	n, 40,05 g/t Ag et 0,14 g/t Au) qui
103	32D09	Dalquier	D.M.C. Soudures inc. / N. Vallières	Dalquier	Co-Cu-Ag- Au-Ni	E, GpMa(S), T
Partie	e ouest de la r	égion 08 : Secteur	Rouyn-Noranda - La Sarre - Témiso	amingue		
104	31L09, 16		X-TERRA Ressources Corporation	Lindsay	ÉTR-Th-U	S (3:358)
105	31L10, 14, 15	Gendreau, Mercier	Matamec Explorations inc.	Zeus	ÉTR-Nb	ET, E, Env, T, G, S (20:2115)
			4,26 Mt à 0,628 % ÉTR ₂ O ₃ +Y2O3 de récupération des ÉTR et du ziro récupération de 89,2 % terres rare	% ÉTR $_2$ O $_3$ + Y $_2$ O $_3$ et 1,008 % ZrO $_2$ à onium à partir de l' $_2$ s. Une étude d'opp	t 0,883 % ZrO ₂ e une teneur de co eudyalite ont été ortunité a été init	t les ressources présumées totalisent pupure de 0,016 % Dy ₂ O ₃ . Des tests effectués et ont mené à des taux de iée à l'automne. Du rainurage a été ice la découverte de 3 indices : Falaises
106	31L10, 15	Booth, McLachlin, Atwater, Reclus	Entreprises minières Globex inc.	Hunters Point	U-ÉTR-Au	E
			<b>Description du projet :</b> L'échantille 3,96 % La, 8,08 % Ce, 0,89 % Pr, 3 468 ppm Ho, 0,12 % Er, 166 ppm	3,00 % Nd, 0,51 %	Sm, 412 ppm Eu	nné les résultats suivants : # 589189 : . 0,33 % Gd, 493 ppm Tb, 0,25 % Dy, .89 % Y.
107	31L15	Atwater	Hinterland Metals Inc.	Kipawa REE	ÉTR-Y-Zr-Au	
108	31L15, 16, 31M01, 02	Booth,	Mines Aurizon Itée	Kipawa	Au-ÉTR	6/ 55/0) 5 O () D
		McLachlin, Senezergues				S (x:6 549), E, Gc(s), Pr
1.09	31L16		Entreprises minières Globex inc.	Turner Falls	ÉTR-Y	E, GpMa, GpRa, G
1.09	·	Senezergues	•	tillons choisis ont de		
1.09	·	Senezergues	Description du projet : Les échan	tillons choisis ont de		E, GpMa, GpRa, G
	31L16	Senezergues Villedieu	<b>Description du projet :</b> Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.	tillons choisis ont do ₃ + Y ₂ O ₃ . Lac Sairs es complétés à l'aut	onné les résultats ÉTR-Nb tomne dont les ré	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ +
110	31L16 31L16	Senezergues Villedieu	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag	tillons choisis ont do ₃ + Y ₂ O ₃ . Lac Sairs es complétés à l'aut	onné les résultats ÉTR-Nb tomne dont les ré	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225)
110	31L16 31L16	Senezergues Villedieu Villedieu	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15 Exploration Diamond Frank inc.	tillons choisis ont do ₃ + Y ₂ O ₃ . Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock	ÉTR-Nb tomne dont les rége LS-10-20. ÉTR-Y-Zr	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225) sultats comprennent une section de
110	31L16 31L16	Senezergues Villedieu Villedieu	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15 Exploration Diamond Frank inc.  Description du projet : Échantillo	tillons choisis ont do ₃ + Y ₂ O ₃ . Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock	ÉTR-Nb tomne dont les rége LS-10-20. ÉTR-Y-Zr	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225) sultats comprennent une section de E, T
110 111 112	31L16 31L16 31L16	Senezergues Villedieu Villedieu Villedieu	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15  Exploration Diamond Frank inc.  Description du projet : Échantillo que 1 % Zr et 0,4 % Y.	tillons choisis ont do 3 + Y ₂ O ₃ .  Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock n ponctuel a retourn	ÉTR-Nb tomne dont les rége LS-10-20. ÉTR-Y-Zr né 0,7 % ÉTR ₂ O ₃	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225) sultats comprennent une section de E, T légères et 0,3 % ÉTR ₂ O ₃ lourdes ainsi
111	31L16 31L16 31L16 31M03	Villedieu  Villedieu  Villedieu  Fabre	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15  Exploration Diamond Frank inc.  Description du projet : Échantillor que 1 % Zr et 0,4 % Y.  Tres-Or Resources Ltd	tillons choisis ont do  3 + Y ₂ O ₃ Lac Sairs es complétés à l'aut  % ZrO ₂ pour le fora  Blackrock n ponctuel a retourn  Fabre	ÉTR-Nb tomne dont les rége LS-10-20. ÉTR-Y-Zr né 0,7 % ÉTR ₂ O ₃ Au-Ag-Co-Bi- Ni-Cu	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225) sultats comprennent une section de E, T légères et 0,3 % ÉTR ₂ O ₃ lourdes ainsi S (2:200)
110 111 112 113	31L16 31L16 31L16 31M03 31M06	Senezergues Villedieu Villedieu Villedieu Fabre Gaboury	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15  Exploration Diamond Frank inc.  Description du projet : Échantillo que 1 % Zr et 0,4 % Y.  Tres-Or Resources Ltd  Fieldex Exploration inc.  Exploration Aurtois inc.	tillons choisis ont do 3 + Y ₂ O ₃ .  Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock n ponctuel a retourn  Fabre  Gaboury  Belleterre Extrême Est uts de la campagne o	ÉTR-Nb tomne dont les ré ge LS-10-20. ÉTR-Y-Zr né 0,7 % ÉTR ₂ O ₃ Au-Ag-Co-Bi- Ni-Cu Au Au de forage effectue	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ +  S (x:4 225) sultats comprennent une section de  E, T légères et 0,3 % ÉTR ₂ O ₃ lourdes ainsi  S (2:200)  GpMa(S), GpEm(S), S (x:x), Gp, T, ET
110 111 112 113	31L16 31L16 31L16 31M03 31M06	Senezergues Villedieu Villedieu Villedieu Fabre Gaboury	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15  Exploration Diamond Frank inc.  Description du projet : Échantillor que 1 % Zr et 0,4 % Y.  Tres-Or Resources Ltd  Fieldex Exploration inc.  Exploration Aurtois inc.  Description du projet : Les résultation projet : Les résult	tillons choisis ont do 3 + Y ₂ O ₃ .  Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock n ponctuel a retourn  Fabre  Gaboury  Belleterre Extrême Est uts de la campagne o	ÉTR-Nb tomne dont les ré ge LS-10-20. ÉTR-Y-Zr né 0,7 % ÉTR ₂ O ₃ Au-Ag-Co-Bi- Ni-Cu Au Au de forage effectue	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ +  S (x:4 225) sultats comprennent une section de  E, T légères et 0,3 % ÉTR ₂ O ₃ lourdes ainsi  S (2:200)  GpMa(S), GpEm(S), S (x:x), Gp, T, ET
110 111 112 113 114	31L16 31L16 31L16 31M03 31M06 31M07	Senezergues Villedieu Villedieu Villedieu Fabre Gaboury Guillet	Description du projet : Les échan Y ₂ O ₃ et # 16716 : 12,81 % ÉTR ₂ O Fieldex Exploration inc.  Description du projet : Huit forag 10,45 m à 0,37 % ÉTR ₂ O ₃ et 0,15 Exploration Diamond Frank inc.  Description du projet : Échantillor que 1 % Zr et 0,4 % Y.  Tres-Or Resources Ltd  Fieldex Exploration inc.  Exploration Aurtois inc.  Description du projet : Les résulta sondage Aur-04-10 qui a donné de	tillons choisis ont do 3 + Y ₂ O ₃ Lac Sairs es complétés à l'aut % ZrO ₂ pour le fora Blackrock n ponctuel a retourn  Fabre  Gaboury  Belleterre Extrême Est ts de la campagne of ses sections de 2,5 m	ÉTR-Nb tomne dont les rége LS-10-20. ÉTR-Y-Zr né 0,7 % ÉTR ₂ O ₃ Au-Ag-Co-Bi-Ni-Cu Au Au de forage effectue à 6,12 g/t Au air	E, GpMa, GpRa, G suivants - # 16714 : 7,10 % ÉTR ₂ O ₃ + S (x:4 225) sultats comprennent une section de  E, T légères et 0,3 % ÉTR ₂ O ₃ lourdes ainsi S (2:200)  GpMa(S), GpEm(S), S (x:x), Gp, T, ET  se à la fin de 2010 comprennent le si que 7,5 m à 8,63 g/t Au.

			dans la région administrative de l'A		-	
NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
117	31M08	Hallé	Richmond Minerals Inc. / Fort Chimo Minerals Inc.	Hallé	Cu-Zn-Au	E, GpEm(S), GpMa(S), S (7:1 600)
118	31M09, 10	Delbreuil, Guy	Fieldex Exploration inc.	Delbreuil	ÉTR-U	Pr, G, E
119	31M13, 14	Montreuil	Adventure Gold inc.	Montreuil	Au	Pr
120	31M14	Pontleroy, Desandrouins	Adventure Gold inc.	Solitaire	Au-Nî-Cu-Zn	Pr
121	32D01	Bousquet	Mines Agnico-Eagle Itée	Ellisson	Au	S (1:3255)
			<b>Description du projet :</b> Le sondag 8,0 g/t Au et 0,11 % Cu y compris en profondeur de la zone Westwood d'exploration de 4,8 M\$, compren	7,0 m à 14,1 g/t A od sur les terrains d	u et 0,16 % Cu, ir d'Agnico-Eagle. La	n de 13,3 m (épaisseur vraie) à nterprétée comme étant l'extension a compagnie prévoit un programme
122	32D01	Cadillac	Mines Agnico-Eagle Itée	Mine Lapa	Au	\$ (x:11 078)
	· ·		<b>Description du projet :</b> Fonçage d Cadillac et une seconde galerie au			ı 1010 vers le SE le long de la Faille tir les ressources en réserves.
123	32D01	Cadillac	Exploration Midland inc. / Mines Agnico-Eagle Itée	Maritime- Cadillac	Au	S (5:4 468)
	·		Description du projet : Le forage minéralisée V4 Ouest, d'une épaiss 13,8 g/t Au.	141-10-26 a retou seur de 5,5 m à 8,0	rné une section, p 6 g/t Au, compren	provenant de la nouvelle zone nant une zone plus riche de 3,0 m titran
124	32D01	Cadillac	Exploration Knick inc. / M. Fekete	Malartic West	Au	S (11+:x)
125	32D02	Bousquet	Gestion IAMGOLD-QUÉBEC inc.	Bousquet- Odino	Au	S (3:1 479), GpEm(S)
126	32D02	Bousquet	Gestion IAMGOLD-Québec inc.	Westwood	Au	Er, S (x:83 660)
			Description du projet : Campagne puits d'exploration pour atteindre d'exploration se poursuivent. La pr	l 100 mètres à la f	in de 2010. Les pi	on planifiée pour 2010. Fonçage du rogrammes de forage de définition et our le début de 2013.
127	32D02	Joannès	Mines d'Or et de Cuivre Newbaska Itée	Davidson Creek (Joannes)	Au-Cu-Ag	S (5:501)
128	32D02	Joannès	Mines Aurizon Itée	Joanna	Au	EF, TM, S (290:70 000), GpGr
			JÀ-10-522 : 47,4 m à 1,7 g/t Au. La l'été 2010 : le gîte Hosco contient d	i compagnie a pub des ressources mes à 1,19 g/t Au (tene	llié un nouveau ca surées et indiquée	rintemps, les résultats comprennent : alcul des ressources au cours de es de 40,55 Mt à 1,33 g/t Au et des e 0,5 g/t Au). L'étude de faisabilité en
129	32D02	Joannès	Mines Aurizon Itée / Corporation Minéraux Alexandria	Joanna- Alexandria (Canton Joannes)	Au	S (55:8 500)
130	32D02	Rouyn	Ressources Threegold inc.	Adanac	Au	GpEm(F)
131	32D02	Rouyn	Adventure Gold inc.	Granada Extension	Au	Pr, G, E
			<b>Description du projet :</b> Découvert 8,9 g/t Au. Une campagne de forag	e de 12 indices au e est planifiée au c	rifères. Des échan lébut de 2011.	ntillons choisis ont retourné jusqu'à
132	32D02	Rouyn	Savant Explorations Itée	McWatters	Au	GpEm(A), GpMa(A), \$ (3:1 500)
133	32D02, 03	Rouyn	Gold Bullion Development Corporation	Mine Granada	Au.	\$ (x:32 000), Env
			<b>Description du projet :</b> Importante GR-10-41 : 75 m à 1,50 g/t Au y co	campagne de fora mpris une section	age ciblant la zone de 20,65 m à 4,9	e LONG BARS. Résultats de forages : 8 g/t Au.
134	32D03	Beauchastel	Mines Richmont inc.	Francoeur	Au	S (x:x)
			Description du projet : Dénoyage infrastructures terminé au début de 2010. À la fin du 3° trimestre, 436 r	l'année tandis que	e les travaux de dé	2001, et remise en service des éveloppement ont débuté en juillet vaient été complétés et les forages de

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	oir figures 4.4, 4.5 et 4.6). TRAVAUX
125	32D03	Beauchastel	Mines Richmont inc.	Wasamac	Au	Er, S (30:20 000)
135	32003	peauChastei		,		
			forage prévue a été augmentée à 2			10,56 m à 4,62 g/t Au. La campagne de
136	32D03	Beauchastel	Cadillac Mining Corporation	Wasa	Cu-Zn	S (1:213)
137	32D03	Beauchastel	Cadillac Mining Corporation	Kekeko East	Cu-Zn	\$ (2:617)
138	32D03	Beauchastel, Rouyn	Les Ressources Yorbeau inc.	Rouyn	Au	ET, S(x:x)
•			Description du projet : Campagne Cinderella a retourné une section c			10. Le forage 10-Cl-535a dans le bloc .0 m à 9,59 g/t Au.
139	32D03	Dasserat	Mines Richmont inc.	Lac Boissier	Au	G
140	32D03	Dasserat	Corporation minière Golden Share / Ressources Minières Vanstar inc.	Lac Fortune West	Au	Pg, ET
141	32D03	Rouyn	Corporation minière Alexis /	Lac Pelletier	Au	EF, Ev(2009-2010=40 000), S (x:x)
			additionnelles ont été foncées au pr à 25,25 g/t Au pour le sondage U-1 d'or sur une période de 14 mois. L	intemps. Des forage 12. L'étude de fais es réserves prouvée	es ont coupé des s abilité positive er es et probables to	
142	32D03	Rouyn	Les Mines d'or Visible inc.	Silidor	Au	E, Pr
-			retourné des valeurs telles que # 8	0788 : 52,16 g/t Ai	u et 6,3 g/t Ag. U	n 1 km au SW de l'ancienne mine ont ne campagne de 13 forages, pour un nouvelle découverte, dénommée la
143	32D03, 04	Dasserat, Dufay	SEMECo inc.	Border	Au	G
144	32D06	Beauchastel	Mines Abcourt inc.	Mine Elder	Au	S (27:x)
			<b>Description du projet :</b> Dénoyage environs de l'ancienne mine Elder,			s. Le forage E10-11, implanté dans les itrant 9,12 g/t Au.
145	32D06	Beauchastel, Duprat	Société d'exploration minière Vior inc.	Beauchastel	Au	S (x:x), E
146	32D06	Dasserat	Mines Richmont inc.	Lac Labyrinthe	Au	GpEl(S)
147	32D06	Dasserat	Corporation minière Rocmec inc.	Rocmec 1	Au'	E(RS-02-09), (RS-03-09), \$ (x:5 000)
			Description du projet : Calcul des	ressources : veine	McDowell - resso	ources mesurées + indiquées :
			résultats de forages comprennent d forage RS-02-10.	att - ressources me es sections de 0,20	surées + indiqué ) m à 26,92 g/t Au	es : 136 900 t à 5,92 g/t Au. Les 1 ainsi que 0,44 m à 8,72 g/t Au pour le
148	32D06	Dasserat	résultats de forages comprennent d	att - ressources me es sections de 0,20 Galloway	surées + indiqué ) m à 26,92 g/t Au Au	es : 136 900 t a 5,92 g/t Au. Les u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S)
148	32D06	Dasserat	résultats de forages comprennent d forage RS-02-10.	es sections de 0,20  Galloway  diamant effectués	) m à 26,92 g/t Au Au sur les zones Gal	u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S) Ioway-Pitchvein et Soaker Hill. Les
	32D06	Dasserat Destor	résultats de forages comprennent d forage RS-02-10.  Ressources Vantex Itée  Description du projet : Forages au	es sections de 0,20  Galloway  diamant effectués	) m à 26,92 g/t Au Au sur les zones Gal	u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S) Ioway-Pitchvein et Soaker Hill. Les
149			résultats de forages comprennent d forage RS-02-10.  Ressources Vantex Itée  Description du projet : Forages au résultats des forages comprennent	es sections de 0,20  Galloway  diamant effectués  VHD10-25: 73,6	om à 26,92 g/t Au Au sur les zones Gal 5 m à 0,67 g/t Au	u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S) loway-Pitchvein et Soaker Hill. Les
148 149 150	32D06	Destor	résultats de forages comprennent de forage RS-02-10.  Ressources Vantex Itée  Description du projet : Forages au résultats des forages comprennent Ressources Explor inc.  Xstrata Canada Corporation /	Calloway  diamant effectués VHD10-25: 73,6  Destor	Au Sur les zones Gal 5 m à 0,67 g/t Au	u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S) loway-Pitchvein et Soaker Hill. Les  GpEm
149 150	32D06 32D06	Destor Dufresnoy	résultats de forages comprennent de forage RS-02-10.  Ressources Vantex Itée  Description du projet: Forages au résultats des forages comprennent.  Ressources Explor inc.  Xstrata Canada Corporation / Corporation minière Alexis.  Ressources Brionor inc.	Galloway  diamant effectués VHD10-25: 73,6 Destor Collines Camac	Au sur les zones Gal 5 m à 0,67 g/t Au Au Au Au Au-Ag-Cu-Zn	Pg, S (x:10 000), ET, GpEm(S), GpMa(S)  loway-Pitchvein et Soaker Hill. Les  CpEm  E, G
149 150 151	32D06 32D06	Destor Dufresnoy	résultats de forages comprennent de forage RS-02-10.  Ressources Vantex Itée  Description du projet : Forages au résultats des forages comprennent Ressources Explor inc.  Xstrata Canada Corporation / Corporation minière Alexis  Ressources Brionor inc.  Description du projet : Le forage	Galloway  diamant effectués VHD10-25: 73,6 Destor Collines Camac	Au sur les zones Gal 5 m à 0,67 g/t Au Au Au Au Au-Ag-Cu-Zn	Pg, S (x:10 000), ET, GpEm(S), GpMa(S)  loway-Pitchvein et Soaker Hill. Les  GpEm  E, G  S (x:x)
149 150	32D06 32D06 32D06	Destor Dufresnoy Duparquet	résultats de forages comprennent de forage RS-02-10.  Ressources Vantex Itée  Description du projet : Forages au résultats des forages comprennent : Ressources Explor inc.  Xstrata Canada Corporation / Corporation minière Alexis  Ressources Brionor inc.  Description du projet : Le forage la 12,43 g/t Au.  Mines Abcourt inc.	es sections de 0,20 Galloway diamant effectués VHD10-25 : 73,6 Destor Collines Camac Pitt Gold PG10-03 a retourne Tagami liamant effectués sui	Au sur les zones Gal 5 m à 0,67 g/t Au Au Au-Ag-Cu-Zn Au é une section de	u ainsi que 0,44 m à 8,72 g/t Au pour le Pg, S (x:10 000), ET, GpEm(S), GpMa(S) loway-Pitchvein et Soaker Hill. Les cpEm E, G S (x:x) 1,30 m à 3,55 g/t Au y compris 0,30 m

NO	SNRC	CANTONS	dans la région administrative de l'A COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
154	32D06	Duprat	Xstrata Canada Corporation / Corporation minière Alexis	Lac Remillac- Four Corners	Au-Ag-Cu-Zn	E, G
155	32D06	Hébécourt	Corporation minière Alexis	Lac Milly	Au-Ag-Cu-Zn	E, G
156	32D06	Hébécourt	Xstrata Canada Corporation / Corporation minière Alexis	Lac Monsabrais	Au-Ag-Cu-Zn	E, G
15 <i>7</i>	32D06	Montbray	Xstrata Canada Corporation / Corporation minière Alexis	Ruisseau St-Pierre-Lac Montbray-Lac Fabie	Au-Ag-Cu-Zn	S (2:798), GpMa(S), GpEm(F), G
158	32D06, 07	Dufresnoy	Xstrata Canada Corporation / Corporation minière Alexis	Dalembert- Dufresnoy	Au-Ag-Cu-Zn	GpEm(S), E
159	32D06, 11	Duparquet, Destor	Xmet inc. / Entreprises minières Globex inc.	Duquesne- Ottoman	Au	GpEl(A),(F) et (S), ET, Er, S (23:9 228), T
			Fox, South Shaft, Shaft et Stinger. Le	es 5 zones contien u). Un forage sur la	nent des ressourc 2 zone Nip - DQ-	été en septembre pour les zones Liz, es présumées de 2 731 276 t à 5,29 g/t :10-17 a donné une section de 17,0 m à IW de la zone Nip.
160	32D07	Aiguebelle, Cléricy, Destor	Exploration Typhon inc. / Mines Aurizon Itée	Fayolle	Au-Ag	EF, Emi, T, Pr, S (24:13 000)
		·	Description du projet : Les résultats y compris 5,0 m à 7,11 g/t Au dans	de forages au diar le forage FA-10-20	mant comprenner ).	nt une section de 10,50 m à 5,08 g/t Au,
161	32D07	Bousquet	Gestion IAMGOLD-Québec inc.	Mine Mouska	Au	Er,S (x:14 829)
162	32D07	Cléricy	Corporation minière Alexis / Xstrata Canada Corporation	Noralex	Au-Cu-Zn-Ag	S (6:2 460), GpEl(S)
163	32D07	Cléricy, La Pause	Exploration Typhon inc.	Faille 1	Au	Gc(s), GpMa(A), GpEm(A)
164	32D07	Cléricy, La Pause	Exploration Midłand inc. / Corporation Minière Osisko	Dunn	Au	S (9:1 253), GpEl
165	32D07	Joannès	Xstrata Canada Corporation / Corporation minière Alexis	Ruisseau Davidson-Lac Marillac	Au-Ag-Cu-Zn	\$ (1:225), GpEl(S), GpEl(F)
166	32 D07	Joannès	Jefmar Inc.	Mine Arrowhead	Au-Ag	ET
167	32D07	La Pause	Exploration Diamond Frank inc.	Gold Peak	Au	GpEm(A), GpMa(A), Gc(e), Gc(t)
168	32D07	La Pause, Cléricy	Exploration Midland inc. / Mines Aurizon Itée	Patris	Au	Pr, Gc(ro)
169	32D07	Manneville	Xstrata Canada Corporation	Xstrata-option	Aน-Cu-Zn-Ag	GpEl(S), S (3:995), T
			<b>Description du projet :</b> Les résultat une section de 1,20 m à 0,51 % Cu	s de forages au dia , 0,49 % Zn et 7,4	mant comprenne 6 g/t Ag.	ent le forage XTA-10-01 qui a donné
170	32D07	Manneville, La Pause	Ressources Cartier inc.	MacCormack	Cu-Zn-Au-Ag	\$ (5:1610), GpEm(\$),GpEm(F)
1 <i>7</i> 1	32D07, 08	Manneville, Villemontel	Ressources Cartier inc.	Preissac	Au-Cu-Zn-Ag	E, G
172	32D08	Cadillac	Mines Agnico-Eagle Itée	Mine LaRonde	Cu-Zn-Au- Ag-Pb	S (x:19 300)
173	32D09	Launay	J. Frigon	Low Mag	Au	GpMa, GpEl
174	32D09	Launay	J. Frigon		Cu-Ni	GpMa
175	32D09	Launay, Trécesson	Corporation Royal Nickel	Dumont	Ni-ÉGP	S (29:11 000), TM, Env
			Description du projet : Un calcul d ressources mesurées et indiquées de ressources présumées de 581 405 t réaliser l'étude de préfaisabilité en 2	1 159 167 000 to 3 0,25 % Ni (teneu	nnes à une teneu	ir moyenne de 0,27 % Ni et des

NO	SNRC	CANTONS	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
176	32D09	Trécesson	Exploration Knick inc. / Les Explorations Carat inc.	Trecesson Gold	Au	E
177	32D09	Villemontel	D.M.C. Soudures inc. / N. Vallières	Villemontel	Cu-Ni-Co	GpMa(S), E, T
178	32D10	Privat	Trijet Mining Corporation	Letourneur	Au	S (15:2 190)
			<b>Description du projet :</b> Les résultar retourné une section de 4,20 m à 4			rennent le sondage LE 2010-11qui a 9,75 m à 18,50 g/t Au.
179	32D11	Destor	Clifton Star Resources Inc. / Corporation Minière Osisko	Duquesne	Au	S (69:20 300)
			<b>Description du projet :</b> Forages au 28,7 m à 1,45 g/t Au, y compris 1,5			210-46 qui a retourné un intervalle de
180	32D11	Duparquet	Clifton Star Resources Inc. /	Mine Beattie	Au-Ag	S (219:69 800), GpMa(A), GpEm(A
		, .	Corporation Minière Osisko			
				campagne de fora	ges ayant donné c	les résultats tels que BD10-265 : 88,0
181	32D11	Duparquet	Description du projet : Importante	campagne de fora	ges ayant donné c Au-Ag	les résultats tels que BD10-265 : 88,0 S (96:32 700)
181	32D11	Duparquet	Description du projet : Importante à 1,90 g/t Au. Clifton Star Resources Inc. / Corporation Minière Osisko	Donchester	Au-Ag	les résultats tels que BD10-265 : 88,0 S (96:32 700) ui a donné 171,1 m à une teneur de
	32D11 32D11	Duparquet  Duparquet	Description du projet : Importante à 1,90 g/t Au. Clifton Star Resources Inc. / Corporation Minière Osisko Description du projet : Sondages e	Donchester	Au-Ag	S (96:32 700)
182			Description du projet : Importante à 1,90 g/t Au. Clifton Star Resources Inc. / Corporation Minière Osisko Description du projet : Sondages e 1,62 g/t Au.	Donchester effectués, dont le f	Au-Ag orage D09-01B q	S (96:32 700) ui a donné 171,1 m à une teneur de
181 182 183 184	32D11	Duparquet	Description du projet : Importante à 1,90 g/t Au. Clifton Star Resources Inc. / Corporation Minière Osisko Description du projet : Sondages e 1,62 g/t Au. Tres-Or Resources Ltd	Donchester effectués, dont le fo Duparquet	Au-Ag orage D09-01B q Au	S (96:32 700) ui a donné 171,1 m à une teneur de T, G, GpMa(S), GpMa(A), GpEm(A)
182 183	32D11 32D15	Duparquet Ligneris	Description du projet : Importante à 1,90 g/t Au. Clifton Star Resources Inc. / Corporation Minière Osisko Description du projet : Sondages e 1,62 g/t Au. Tres-Or Resources Ltd J. Frigon	Donchester effectués, dont le f Duparquet Ligneris	Au-Ag orage D09-01B q Au Au	S (96:32 700)  ui a donné 171,1 m à une teneur de  T, G, GpMa(S), GpMa(A), GpEm(A)  Pr

^{1.} Voir légende et signification des caractères gras et en italique à l'annexe 2.

NO	SNRC	RÉGION ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX	
Région	ı administrati	ve de l'Outaouais (07)					
1	31N09, 10 31O12, 13	07 et en partie 08 / Grenville	Ressources Cartier inc. / Copper One Inc.	Rivière Doré	Cu-Ni-Co-Pt- Pd-Au	E, GpMa(A), GpEm(A), T	
			<b>Description du projet :</b> De gros bloc affleurements dont les plus minéralis de l'indice Bruges, sur la propriété Riv	és renferment 0,74	% Cu ont été déc	ouverts récemment à 10 km	
2	31O05, 31N08	07 / Grenville	Mines Virginia inc. / SOQUEM INC.	Colonel	Ni-Cu-ÉGP	T	
3	31O05	07 / Grenville	Ressources Maxima inc.	Boxi	ÉTR-U	G, GpRa(S)	
		· .	Description du projet : Des lectur un spectromètre sur un dyke de pe métasédimentaires.				
·4	31J04	07 / Grenville	Exploration Midland inc. / Zincore Metals inc.	Gatineau Zinc (Leitch)	Zn	E, GpEm(S), GpMa(S), S (x:x),	
			Description du projet : Un total de l'horizon minéralisé, encaissé dans meilleurs résultats obtenus sont 24,	des marbres, qui p	oeut être suivi sur	plus de 80 m de longueur. Les	
5 .	31J04	07 / Grenville	Exploration Midland inc. / Zincore Metals inc.	Gatineau Zinc (Lafontaine)	Zn	E, GpEm(S), GpMa(S), S (x:x),	
			Description du projet: Un total de zone de sulfures massifs, logée dan. Sur l'ensemble des rainures pratique d'une longueur variant de 0,45 m à atteint 43,13 % Zn.	s des marbres. Le 1 ées sur les gîtes Le	meilleur résultat c itch et Lafontaine	btenu est 21,0 % Zn sur 2,0 m., un total de douze intervalles	
6	31K02	07 / Grenville	Stelmine Canada Itée	Gatineau Bloc 1 (Black Lake)	ÉTR-U	G, Pr	
7	31F16	07 / Grenville	Stelmine Canada Itée	Gatineau Bloc 1 (Murray)	ÉTR-U	G, Pr	
8	31G12	07 / Grenville	Stelmine Canada Itée	Gatineau Bloc 1 (Dam Lake)	ÉTR-U	G, Pr	
9	31G12	07 / Grenville	Stelmine Canada Itée	Gatineau Bloc 1 (Cantley- Templeton- Quinville)	ÉTR-U	G, Pr	
10	31G12	07 / Grenville	Stelmine Canada Itée	Gatineau Bloc 2 (Meach Lake)	ÉTR-U	G	
Cf. 14	31J05	15 et en partie 07 / Grenville	Corporation minière Golden Share	Lutétium	ÉTR	E, G, GpRa	
Région	administrativ	e des Laurentides (15)					
11	31011	15 / Grenville	Mines Virginia inc. / SOQUEM INC.	Coucou	Ni-Cu-ÉGP	S (3:435)	
12	31O03, 04, 05, 06	15 / Grenville	Mines Virginia inc. / SOQUEM INC.	Picher	Ni-Cu-ÉGP	T	
13	31O03	15 / Grenville	Ressources Maxima inc.	Peter Lake	Cu-Ni	E, T	
		·	<b>Description du projet :</b> Des teneur échantillons choisis de gabbro.	s supérieures à 31	% Cu et à 2,75 %	6 Ni ont été obtenues dans des	
14	31J05	15 et en partie 07 / Grenville	Corporation minière Golden Share	Lutétium	ÉTR	E, G, GpRa	
			<b>Description du projet :</b> Parmi les 53 échantillons prélevés sur des affleurements présentant des anomalies radiométriques, sept ont des teneurs en éléments de terres rares variant entre 0,5 et 2,53 % ETR ₂ O ₃ . Le résultat de 2,53 % confirme la minéralisation historique. Deux échantillons ont des teneurs supérieures à 1 %; ils ont été prélevés à 1 km et à 1,5 km de la minéralisation historique. Les zones minéralisées sont localisées dans des pegmatites au contact entre des roches métasédimentaires et des migmatites.				

NO	SNRC	RÉGION ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX		
15	31G16, 31J01	15 / Grenville	Pacific Arc Resources Ltd	Lac du Pin Rouge	Fe-Ti	G, Gc, Gp		
Régio	n administrativ	ve Lanaudière (14)			가능을 밝힌다.			
16	31H13	14 / Plate-forme du Saint-Laurent	Graymont (QC) Inc.	Joliette	Calcaire	S (4:74,8)		
			Description du projet : Extraction	de quelques blo	cs pour des tests su	r la qualité de la pierre.		
Régio	n administrativ	ve de la Mauricie (04)						
17	31 P03	04 / Grenville	Ressources Jourdan inc.	Lac Baude	ÉTR	Pg, E		
J			<b>Description du projet :</b> Depuis 2009, Ressources Jourdan s'intéresse à un ancien indice d'allanite et de zircon découvert en 1893 pour son potentiel en terres rares. Lors de ses activités d'exploration en 2010, la compagnie a analysé cinq échantillons choisis et obtenu des valeurs variant entre 0,02 % et 3,50 % d'oxyde de terres rares et jusqu'à 0,17 % d'oxyde d'uranium.					
18	31116	04 / Grenville	Les Mines d'or Excel înc.	Batiscan (Montauban)	Au-Ag-Zn-Pb- Cu	Pg, S (61:1830)		
			Description du projet : La campagne de forages débutée à l'automne 2009 vise à évaluer la présence de minéralisation en or et en argent restante dans l'ancienne mine Montauban où il est prévu d'extraire le minerai à partir d'une petite fosse à ciel ouvert. Un total de 61 forages verticaux d'une profondeur moyenne de 30 mètres ont été effectués. Les teneurs obtenues sur les minéralisations recoupées atteignent 14,32 g/t Au et 25,84 g/t Ag sur 2,58 mètres.					
Régio	n administrativ	e de la Capitale-Nation	nale (03)					
19	21M15	03/ Grenville	Silicium Québec	Malbaie	Quartzite	Ţ		
Régio	n administrativ	ve du Saguenay–Lac-Sai	nt-Jean (02)					
20	22D11	02 / Grenville	Exploration Dios inc.	Shipshaw	ÉTR-Nb-Zr-P	GpMa(A), S (20:3200), G, E		
			<b>Description du projet :</b> Le Complexe de carbonatites de Shipshaw a été découvert au printemps 2010 en forant une cible pour des métaux stratégiques et des terres rares. La cible consiste en un creux magnétique circulaire localisé à 7 km de la mine Niobec exploitée pour le niobium. Un levé magnétique héliporté couvrant une superficie 40 km² avec des lignes de vol espacées de 75 m a été effectué en 2010. Une campagne de forages vient de s'amorcer. Plusieurs zones minéralisées ont été recoupées dans la carbonatite. Des valeurs en niobium atteignant 0,053 % d'oxyde de niobium, 12 % de phosphate et 0,49 % d'oxydes totaux d'éléments des terres rares excluant l'yttrium et le zirconium ont été obtenues.					
21	22D11	02/Grenville	Micrex Devolopment Corp.	Saint-Charles	ÉTR-Ti-V-P	Pg		
			<b>Description du projet :</b> Le gîte de potentiel en terres rares et en vanacentre Alma et Jonquière.	fer et titane de Sa dium. Ce gîte se s	aint-Charles-de-Bo situe sur la rive nor	urget est réévalué pour son d du Saguenay, à mi-chemin		
22	22 E10, 15	02 / Grenville	Ressources d'Arianne inc.	Lac à Paul	P-Ti	EF, S (18:3590)		
			Description du projet : La propriét sur lesquels trois zones minéralisées 2 et Manouane contiennent un tota TiO ₂ et 78 Mt de ressources indique complété sa campagne de forages of forages. Cette campagne de forages jusqu'à 400 mètres verticaux et qu' de phosphore et titane du Lac à Par	s ont été explorée al de 260,25 Mt d ées à 7,24 % P ₂ C le définition sur l a clairement dé elle demeure end	es de façon plus int de ressources présu 0 _s et 7,84 % TiO ₂ . L a zone Paul totalisa montré que la zone core ouverte. L'étuc	rensive. À ce jour, les zones Paul, Imées à 5,7 % P ₂ O ₃ et 7,64 % La compagnie a récemment ant 3 590 mètres répartis sur 18 Le Paul se continue en profondeu		
23	32H07, 10	02 / Grenville	MDN inc.	Crevier	Ta-Nb	EF		
			<b>Description du projet :</b> L'analyse p mise en production d'une ressource aller de l'avant avec l'étude de faisa	e de niobium et d	de tantale amène M			

NO	SNRC	RÉGION ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX		
24	32G09	02 / Supérieur	Ressources Cartier inc.	Dollier	Au	GpEm(A), GpMa(A)		
			Description du projet : L'indice au de hauts magnétiques et d'anomali de sulfures semi-massifs (pyrite-pyr magnétique héliporté totalisant 530 vols espacées aux 100 mètres. Ce l ont été priorisées pour une campag	ies électromagnéti rhotine) dans des 3 kilomètres a été evé a permis d'ide	ques. Cet indice e laves mafiques. U complété à l'auto entifier 206 anoma	est composé d'un horizon n levé électromagnétique et mne 2009, le long de lignes de alies électromagnétiques dont 48		
Régio	n administrati	ve de la Côte-Nord (09)						
25	22J07	09 / Grenville	Mines Arnaud inc.	Arnaud	Apatite	S (x:19 000), EF		
26	22E08	09 / Grenville	Argex Silver Capital Inc.	Lac Brule	Fe-Ti			
27	22K04	09 / Grenville	Corporation Ressources Nevado	La Blache #1 Iron-Titanium- Vanadium	Fe-Ti-V	E, Pr, GpMa(A), GpEm(A)		
			<b>Description du projet :</b> Échantillor Fe ₂ O ₃ , 17,6 % TiO ₂ et 0,12 % V ₂ O ₅ indice Leduc-Farrell : # 698056 : 6	; indice Farreli-Ta	ylor : 63,5 % Fe₂C	o ₃ , 18,7 % TiO ₂ et 0,10 % V ₂ O ₃ ;		
28	22K04	09 / Grenville	Argex Silver Capital Inc.	La Blache (West Hervieux)	Ti-Fe-V-Mg	S(41:6 000), ET		
			<b>Description du projet :</b> Campagne comprennent le forage HW-10-029 17,85 % TiO ₂ et 0,50 % V ₂ O ₅ .					
29	22K04	09 / Grenville	Argex Silver Capital Inc.	La Blache (East Hervieux)	Ti-Fe-V-Mg	GpMa(A), GpEm(A), S(136:20 294), TM		
			<b>Description du projet :</b> Le forage HE-10-001 a retourné un intervalle de 91,2 m titrant 63,87 19,05 % $TiO_2$ et 0,53 % $V_2O_3$ . Un calcul des ressources est en cours au début de 2011.					
30	23F11, 12, 13, 14	09 / Supérieur	Mines Virginia inc.	Ashwanipi	Au-Cu-Zn-Mo	T, Pr		
31	22F13		Ressources Jourdan inc.	Dissimieux	Ti-P-ÉTR			
				Lake Titanium- Phosphate-Rare Earth Elements				
32	23B14	09 / Grenville	Consolidated Thompson Iron Mines Ltd	Lac Bloom	Fe	EF, première expédition de minerai en juillet 2010		
	·		Description du projet : La construction de la mine du Lac Bloom est terminée et l'expédition du premier chargement de concentré de fer pour la Chine a été effectuée du Port de Sept-Îles au mois de juillet 2010. La société a initié l'étude de faisabilité pour doubler la production, passant de 8,0 Mt à 16,0 Mt de concentré par année, débutant en 2012.					
33	23B11, 12, 14, 23B05, 06, 22O13	09 / Grenville	Champion Minerals Inc. / Fancamp Exploration Ltd	Fermont (16 propriétés)	Fe	TM, ET, S (x:18 000), (Er : Fire Lake North)		
			Description du projet : La compagnie a effectué un calcul des ressources pour le gîte Fire Lake North. Le gîte contient des ressources présumées de 388 Mt à 29 % Fe total. Des tests métallurgiques ont été réalisés et la compagnie prépare trois sites pour prélever un échantilion en vrac. Sur le bloc Fire Lake North, des forages ont retourné des sections telles 197,8 m à 38,3 % Fe total dans le forage FL10-24. Des forages (54) ont également été complétés sur le bloc Harvey-Tuttle et les résultats comprennent le sondage HT10-07 qui a donné une section de 168,4 m à 30,3 % Fe total.					
34	22J10	09 / Grenville	M. Richard / S. Landry	Lachipie	Au-Pt-Ni-Cu- Ag-ÉTR	T, Gp, E		
35	22J06	09 / Grenville	Big Red Diamond Corporation / Artic Star Diamond Corp.	J6L1 Rare Earth Element	ÉTR	E, G, GpMa(A), GpRa(A)		
36	22P03	09 / Grenville	Gitennes Exploration Inc.	Blue Ice	ÉTR-Li-Be-Ni- Cu	G, E, Pr		

	SNRC	RÉGION ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
37	22P03	09 / Grenville	Focus Metals / SOQUEM INC.	Kwyjibo	ÉTR-P-F-Mo-U- Au-Cu	E, PR, G, GpEm(A)
	-1		<b>Description du projet :</b> Des rainur des sections telles 1,0 m à 1,12 % É			
38	12L08	09 / Grenville	Ressources Jourdan inc.	Baie-Johan- Beetz	U	S (20:2 111)
		·	Description du projet : La campaş meilleurs résultats comprennent le fo			
39	12K12, 12L07, 08, 09	09 / Grenville	Uracan Resources Ltd	North Shore	U	Er, S (x:x), Gc, Pr, E
7 4 4 <u>2</u> 4 4			Description du projet : La compaç comprennent le sondage CA4-10-2 ont été échantillonnées dans le bloc	qui a retourné 8,	4 m à une teneur	de 0,046 % U ₃ O ₈ . Des rainure
		ve de l'Estrie (05)				
40	31H08	05 / Appalaches	Fancamp Exploration Ltd	Brompton Copper	Cu	GpEm(A)
<b>1</b> 1	21E/12	05 / Appalaches	Adventure Gold Inc.	Stoke	Au	G .
42	21E05, 11, 12, 13, 14 31H01, 08, 09	05 / Appalaches	Bowmore Exploration Ltd.	St-Victor	Au	E, GpMa(A), GpEm(A)
	•		<b>Description du projet :</b> À environ (Camille, Wotton et Wotton NW) o			
			carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0	t au Synclinorium	de Saint-Victor, Au	
43	21E12	05 / Appalaches	carbonatées (ankérite), appartenant	t au Synclinorium	de Saint-Victor, Au	
43	21E12	05 / Appalaches	carbonatées (ankérite), appartenan révélé des teneurs variant entre 0,0	t au Synclinorium o 15 g/t et 0,99 g/t Au Stoke gnie a découvert d . Un échantillonna r 1,0 m. À 45 m d g/t Au, 7,73 % Zn, Ascot-Weedon, un	de Saint-Victor. Au u sur 1,25 km². Cu-Zn- Au es blocs erratiques ge en rainure a ré e profondeur, le so 1,73 % Cu, 2,62 °	Litotal, 418 échantilons ont E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L
	21E12 21E12	05 / Appalaches 05 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet: La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture /	t au Synclinorium o 15 g/t et 0,99 g/t Au Stoke gnie a découvert d . Un échantillonna r 1,0 m. À 45 m d g/t Au, 7,73 % Zn, Ascot-Weedon, un	de Saint-Victor. Au u sur 1,25 km². Cu-Zn- Au es blocs erratique: ge en rainure a ré e profondeur, le sc 1,73 % Cu, 2,62 ° e ceinture hôte de	Litotal, 418 échantilons ont E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L
44			carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet: La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne	t au Synclinorium o 15 g/t et 0,99 g/t Au Stoke gnie a découvert d . Un échantillonna r 1,0 m. À 45 m d g/t Au, 7,73 % Zn, Ascot-Weedon, une es mines.	de Saint-Victor. Au u sur 1,25 km². Cu-Zn- Au es blocs erratique: ge en rainure a ré e profondeur, le sc 1,73 % Cu, 2,62 ° e ceinture hôte de	E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. Le plusieurs gîtes de type sulfure
4445	21E12	05 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet: La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne Fancamp Exploration Ltd	t au Synclinorium of 5 g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m de g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravire e confirmer la prése de. Un levé gravirulon et de Cupra. Lessifs volcanogènes	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratiques ge en rainure a ré e profondeur, le so 1,73 % Cu, 2,62 s e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 ince de deux lobes étrique et un levé e projet Weedon a (SMV) dans la cein	E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L e plusieurs gîtes de type sulfure GpEm(A), S (x:x) G, Gc(s), GpGr a été effectuée dans le anomaux à environ 500 m géochimique ont débuté a pour but la localisation de nture volcano-sédimentaire
44 45	21E12 21E11, 14	05 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet : La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne Fancamp Exploration Ltd  Exploration Midland inc.  Description du projet : Une exten secteur Lingwick. Le levé a permis de au nord-ouest du dépôt de Lingwick entre les anciennes mines de Weec minéralisations de type sulfures ma	t au Synclinorium of 5 g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m de g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravire e confirmer la prése de. Un levé gravirulon et de Cupra. Lessifs volcanogènes	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratiques ge en rainure a ré e profondeur, le so 1,73 % Cu, 2,62 s e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 ince de deux lobes étrique et un levé e projet Weedon a (SMV) dans la cein	E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L e plusieurs gîtes de type sulfure  GpEm(A), S (x:x)  G, Gc(s), GpGr a été effectuée dans le anomaux à environ 500 m géochimique ont débuté a pour but la localisation de nture volcano-sédimentaire
44 45 46	21E12 21E11, 14	05 / Appalaches 05 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet: La compagatteignant 23,4 % Zn et 2,74 % Cu incluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne Fancamp Exploration Ltd  Exploration Midland inc.  Description du projet: Une exten secteur Lingwick. Le levé a permis de au nord-ouest du dépôt de Lingwice entre les anciennes mines de Wecc minéralisations de type sulfures ma d'Ascot-Weedon, une ceinture hôte	t au Synclinorium of 5 g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m de g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravir e confirmer la prése de. Un levé gravime lon et de Cupra. Le ssifs volcanogènes e de plusieurs gites	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratique: ge en rainure a ré e profondeur, le sc 1,73 % Cu, 2,62 s e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 ence de deux lobes étrique et un levé e projet Weedon a (SMV) dans la ceiu s SMV et d'anciens  Cu-Zn	E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L e plusieurs gîtes de type sulfure  GpEm(A), S (x:x)  G, Gc(s), GpGr a été effectuée dans le anomaux à environ 500 m géochimique ont débuté a pour but la localisation de nture volcano-sédimentaire nes mines.
44 45 46 47	21E12 21E11, 14 21E07 21E07 21E10, 15,	05 / Appalaches 05 / Appalaches 05 / Appalaches 05 / Appalaches 05 et en partie 12 /	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0  Fancamp Exploration Ltd  Description du projet : La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne  Fancamp Exploration Ltd  Exploration Midland inc.  Description du projet : Une extensecteur Lingwick. Le levé a permis de au nord-ouest du dépôt de Lingwicentre les anciennes mines de Weec minéralisations de type sulfures ma d'Ascot-Weedon, une ceinture hôte Fancamp Exploration Ltd	t au Synclinorium of 5 g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m do g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravire e confirmer la prése de Cupra. L' ssifs volcanogènes e de plusieurs gres e de plusieurs gres	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratique: ge en rainure a ré e profondeur, le sc 1,73 % Cu, 2,62 s e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 ence de deux lobes étrique et un levé e projet Weedon a (SMV) dans la ceiu s SMV et d'anciens  Cu-Zn	E, GpEm(A), S (6:x), T s, angulaires, avec des teneurs vélé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté % Pb et 231 g/t Ag sur 1,0 m. L e plusieurs gîtes de type sulfure  GpEm(A), S (x:x)  G, Gc(s), GpGr a été effectuée dans le anomaux à environ 500 m géochimique ont débuté a pour but la localisation de nture volcano-sédimentaire nes mines.  GpEm(A), S (x:x)
44 45 46 47 48	21E12 21E11, 14 21E07 21E10, 15, 16	05 / Appalaches 05 / Appalaches 05 / Appalaches 05 / Appalaches 05 et en partie 12 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0 Fancamp Exploration Ltd  Description du projet : La compagatteignant 23,4 % Zn et 2,74 % Cuincluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture // massifs volcanogènes et d'ancienne Fancamp Exploration Ltd  Exploration Midland inc.  Description du projet : Une exten secteur Lingwick. Le levé a permis de au nord-ouest du dépôt de Lingwice entre les anciennes mines de Weec minéralisations de type sulfures ma d'Ascot-Weedon, une ceinture hôte Fancamp Exploration Ltd  Fancamp Exploration Ltd  Western Troy Capital Resources	t au Synclinorium of g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m de g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravire e confirmer la prése de Un levé gravire lon et de Cupra. Lessifs volcanogènes e de plusieurs gites  Clinton  North Megantic	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratiques ge en rainure a ré e profondeur, le so 1,73 % Cu, 2,62 ° e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 ence de deux lobes étrique et un levé e projet Weedon a (SMV) dans la ceia SMV et d'anciena  Cu-Zn  Cu-Zn  Mo	E, GpEm(A), S (6:x), T  Is, angulaires, avec des teneurs velé 1,32 g/t Au sur 4,0 m, ondage ST-10-06 a rapporté Pb et 231 g/t Ag sur 1,0 m. Le plusieurs gîtes de type sulfure  GpEm(A), S (x:x)  G, Gc(s), GpGr  a été effectuée dans le anomaux à environ 500 m géochimique ont débuté a pour but la localisation de nture volcano-sédimentaire nes mines.  GpEm(A), S (x:x)  GpEm(A), S (x:x)
44	21E12 21E11, 14 21E07 21E10, 15, 16 21E10	05 / Appalaches 05 / Appalaches 05 / Appalaches 05 et en partie 12 / Appalaches 05 / Appalaches	carbonatées (ankérite), appartenant révélé des teneurs variant entre 0,0  Fancamp Exploration Ltd  Description du projet: La compagatteignant 23,4 % Zn et 2,74 % Cu incluant 4,0 g/t Au et 0,61 % Zn su 6,21 g/t Au sur 4,2 m, incluant 22,4 propriété fait partie de la ceinture / massifs volcanogènes et d'ancienne  Fancamp Exploration Ltd  Exploration Midland inc.  Description du projet: Une exten secteur Lingwick. Le levé a permis de au nord-ouest du dépôt de Lingwice entre les anciennes mines de Wecc minéralisations de type sulfures ma d'Ascot-Weedon, une ceinture hôte Fancamp Exploration Ltd  Fancamp Exploration Ltd  Western Troy Capital Resources Inc.	t au Synclinorium of 5 g/t et 0,99 g/t Au Stoke gnie a découvert d. Un échantillonna r 1,0 m. À 45 m de g/t Au, 7,73 % Zn, Ascot-Weedon, unes mines.  Jackson Gold  Weedon sion du levé gravir e confirmer la prése de. Un levé gravir e confirmer la prése de. Un levé gravir e confirmer la prése de de plusieurs gîtes Clinton  North Megantic  Calloway	de Saint-Victor. Au u sur 1,25 km².  Cu-Zn- Au es blocs erratiques ge en rainure a ré e profondeur, le sc 1,73 % Cu, 2,62 s e ceinture hôte de  Au  Cu-Zn-Au métrique de 2009 eftrique et un levé e projet Weedon a (SMV) dans la cei is SMV et d'ancieni Cu-Zn  Cu-Zn  Mo	E, GpEm(A), S (6:x), T  Is, angulaires, avec des teneurs  Is, angulaires, angulaires  Is, angulaires

NO	SNRC	RÉGION	bec, à l'exception de l'Abitibi-Témis	DDOILLE	STIDSTANICES	TDAVALIV
NU	SINKC	ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PKUJEIS	SUBSTANCES	TRAVAUX
Région	administrati	ve du Centre-du-Québec	(17)			
51	21L04	17 / Appalaches	Corporation Ressources Nevado	Chester	Au	E, G, Gp, Gc(ro)
Cf. 52	21E13, 14	12 et en partie 05, 17 / Appalaches	Corporation Ressources Nevado	Nicolet, Nicolet-Nord, Nicolet-Est	Au	E, G, Gp, Gc(ro)
Région	administrati	ve de la Chaudière-Appa	laches (12)			
Cf. 47	21E10, 15, 16	05 et en partie 12 / Appalaches	Fancamp Exploration Ltd	North Megantic	Cu-Zn	GpEm(A), S (x:x)
52	21E13 <u>,</u> 14	12 et en partie 05, 17 / Appalaches	Corporation Ressources Nevado	Nicolet, Nicolet-Nord, Nicolet-Est	Au	E, G, Gp, Gc(ro)
		÷	Description du projet : Le prélève Mines, ont mené à la découverte d' des roches sédimentaires partiellem Daniel, en bordure du complexe op prélevés sur une superficie de 40 m anomalies isolées, réparties sur une	'une zone anomal ient carbonatées (a phiolitique de The i par 25 m. Ils ont	e en or, la zone C ankérite) qui font tford Mines. Au to révélé des teneur	Old Quarry. Cette zone renferme partie du Mélange de Saint- otal, 60 échantillons ont été rs de 0,25 g/t Au. D'autres
53	21L03, 06	12 / Appalaches	Corporation Ressources Nevado	Harvey-Hill	Au	E, G, Gp, Gc(ro)
54	21L02	12 / Appalaches	Fancamp Exploration Ltd	Beauce	Au	S (22:1219)
			<b>Description du projet :</b> Deux cible Timrod, 13 forages d'une profonder Sur la cible Rapides du Diable, ce si valeurs atteignent 0,57 g/t Au.	ur moyenne de 50	m pour un total	de 400 m ont été effectués,
55	21L02	12 / Appalaches	Ressources de la Baie d'Uragold inc.	Beauce Placer Gold	Au	E, ET
			Description du projet : Ressources parallèle à la rive sud de la rivière C 1960. La compagnie débute une ca paléoplacer.	iilbert, exploité pa	r la Beauce Place	r Company au début des années
56	21L08	12 / Appalaches	Golden Hope Mines Ltd	Bellechasse (FSG)	Au-Zn-Cu-Pb	Pg, E
			Description du projet : Le projet B et s'étend sur une bande de 10 km Beauregard. Elle comprend notamm de géochimie de sol effectué dans le compagnie a entrepris des travaux de	de large par 95 kn ent les secteurs FS e secteur FSG a pe	n de long, entre 5 5G, Timmins, Lava ermis d'identifier d	aint-Victor et Sainte-Lucie-de- al's Mountain et Béland. Un levé quatre anomalies aurifères où la
57	21L09	12 / Appalaches	Golden Hope Mines Ltd	Bellechasse (Béland)	Au	S (3:633)
58	21L09	12 / Appalaches	Golden Hope Mines Ltd	Bellechasse (Timmins)	Au	S (57:13991), Ev (710:3), G
			Description du projet : L'indice aux or encaissées dans un gabbro. Ce gî minéralisées ont donné des résultats d'environ 710 tonnes donne des rés	te a fait l'objet de : atteignant 9,05 g	57 sondages au d 't Au sur 9 mètres	iamant. Des intersections
59	21L09	12 / Appalaches	Golden Hope Mines Ltd	Bellechasse (Sugar Bush)	Au	Pg
60	21L09	12 / Appalaches	Golden Hope Mines Ltd	Bellechasse (Laval's	Au	S (6:1414), Gc(s)

NO	SNRC	RÉGION ADMINISTRATIVE / PROVINCE GÉOLOGIQUE	COMPAGNIES / PROSPECTEURS	PROJETS	SUBSTANCES	TRAVAUX
Région	administrati	ve du Bas-Saint-Laurent	(01)			
51	21N06, 07	11 / Appalaches	Ardoisière du Témis Inc.	Ardoise - Témiscouata	Ardoise	S (x:x)
Cf. 62	22B09, 16	11 et en partie 01 / Appalaches	Ressources Threegold inc.	Dôme Lemieux	Au-Ag-Cu- Zn-Pb	S (12:x)
Région	administrati	ve de la Gaspésie-Îles-c	le-la-Madeleine (11)			
62	22B09, 16	11 et en partie 01 / Appalaches	Ressources Threegold inc.	Dôme Lemieux	Au-Ag-Cu- Zn-Pb	S (12:x)
			Description du projet : Une camp la répartition des métaux précieux ( Brandy Sud et A4-B4.			
63	22A13	11 / Appalaches	Xstrata Canada Corporation	Mont Porphyre	Cu	S (x:x), Gp, R
			Description du projet : Xstrata a te			nolition et de réhabilitation des ins ce secteur, la compagnie
			poursuit des travaux d'exploration p			
54	22A06	11 / Appalaches			Li	Pr
54 55	22A06 22H03	11 / Appalaches 11 / Appalaches	poursuit des travaux d'exploration p Western Troy Capital Resources	oour le cuivre.		

¹⁻ Voir légende et signification des caractères gras et en italique à l'annexe 2

## CHAPITRE 5 - MISE EN VALEUR ET DÉVELOPPEMENT MINIER

Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Martin Dumas, Germain Girard, Denis Raymond

Au cours de l'année 2010, dix-sept projets miniers ont atteint ou maintenu le stade de mise en valeur (figure 5.1; tableau 5.1). Par ailleurs, neuf projets miniers ont atteints le stade du développement (figure 5.1; tableau 5.2).

Dans le cadre de la démarche du Plan Nord, l'étude d'opportunité pour la mise en œuvre du projet de construction de la route des Monts Otish est un élément important à considérer. Cette route permettrait, notamment, l'amélioration de l'accès à un territoire présentant un fort potentiel minéral, dont plusieurs projets de mise en valeur pour le diamant (Renard), l'uranium (Matoush) et le cuivre (Lac Mcleod). Plusieurs entreprises minières se montrent intéressées par le Nord du Québec et, par conséquent, au développement de la route des Monts Otish.

### 5.1 - Mise en valeur

#### **FER**

ArcelorMittal Mines Canada étudie la possibilité d'exploiter la mine de Fire Lake sur une base annuelle (8 Mt/an de concentré de fer). Cette décision impliquerait des investissements importants pour les immobilisations (construction d'une usine de traitement) et l'aménagement du site (parc à résidus). Présentement, une production saisonnière de 3 Mt/an de minerai de fer est transportée aux installations du Mont-Wright.

#### NICKEL, CUIVRE, COBALT ET ÉLÉMENTS DU GROUPE DU PLATINE (ÉGP)

Royal Nickel réalisera des essais métallurgiques sur un échantillon en vrac de 50 tonnes en provenance du projet **Dumont Nickel**, pour lequel elle a obtenu toutes les autorisations nécessaires.

À 275 km au nord-est de Chibougamau, Western Troy Capital Resources a initié une étude de faisabilité pour l'exploitation à ciel ouvert du projet de cuivre-molybdène-argent du Lac Macleod. Ce projet pourrait bénéficier de l'éventuelle route vers les Monts Otish.

#### OR

Corporation minière Alexis a réalisé des travaux souterrains sur le projet du Lac Pelletier. De plus, elle a recueilli un échantillon en vrac de 15 000 tonnes de minerai, traité à l'ancienne usine Aurbel, générant près de 2 300 onces d'or après récupération à l'usinage. Les données recueillies serviront à l'étude de faisabilité sur le projet.

Corporation minière Rocmec a annoncé des ressources conformes à la norme 43-101 sur le gîte Rocmec 1 – Russian Kid. Des forages additionnels totalisant 2000 mètres sont en cours de réalisation. L'entreprise utilise la fragmentation

thermique pour extraire le minerai aurifère de veines étroites à haute teneur.

Après une tournée d'information auprès des collectivités concernées par le projet **Joanna**, situé à l'est de Rouyn-Noranda, **Mines Aurizon** a entrepris une étude de faisabilité, laquelle devrait être complétée au cours de 2011.

North American Palladium procède au dénoyage des installations du projet Vezza afin d'y effectuer une campagne d'exploration qui pourrait mener à la décision de rouvrir la mine au début de 2012.

En juin, Corporation minière Northern Star a suspendu le fonçage d'une rampe d'accès et de galeries d'exploration qu'elle effectuait sur le projet Malartic-Midway.

Ressources Métanor a débuté des travaux en vue d'approfondir le puits de l'ancienne mine Bachelor de 180 mètres. La compagnie veut recueillir un échantillon en vrac de 5000 tonnes à partir de trois niveaux. Les données serviront à compléter l'étude de faisabilité.

#### **URANIUM**

Ressources Strateco a poursuivi ses activités visant le développement de son projet d'uranium Matoush situé en terres conventionnées (CBJNQ). L'étude d'opportunité économique a été mise à jour. Ce projet a dû faire l'objet d'une évaluation des impacts environnementaux et sociaux ainsi que d'audiences publiques, menées par le COMEX et le COFEX, en mai et novembre 2010. Des groupes se sont prononcés contre le projet, entre autres, la communauté crie de Mistissini et le Grand Conseil des Cris. Les dirigeants désirent procéder à la mise en production de cette mine d'ici 2013. Ce projet pourrait également bénéficier l'éventuelle route vers les Monts Otish.

#### **LITHIUM**

Canada Lithium a été très active dans le développement de son projet Québec Lithium situé près de La Corne en Abitibi. Ce projet de 200 M\$ vise l'exploitation d'une mine à ciel ouvert de spodumène et d'une usine de transformation pour produire du carbonate de lithium. Sur la base d'une étude de faisabilité, une mise en production est anticipée pour 2013, conditionnellement à l'obtention du financement, des permis et des autorisations nécessaires.

#### TERRES RARES

Quest Rare Minerals a poursuivi sa campagne de forage et procédé à une première évaluation des ressources en terres rares pour le projet **B-Zone** sur sa propriété **Strange Lake** au nord de Schefferville. Des essais métallurgiques et diverses études techniques ont permis la publication d'une étude d'op-

portunité économique préliminaire. Une révision des ressources et diverses études techniques sont prévues au début 2011. Une étude de préfaisabilité est prévue pour 2011-2012.

#### MINÉRAUX INDUSTRIELS

MDN veut mettre en exploitation son gîte de niobium-tantale sur le projet Crevier, situé au nord de la municipalité de Girardville au Lac-Saint-Jean. Des études environnementales ont été réalisées sur les lieux du site. L'étude de faisabilité devrait être terminée en 2011.

Spécialisée dans les engrais, la multinationale Yara International de Norvège et la Société générale de financement évaluent la faisabilité d'exploiter un gîte d'apatite sur le projet Arnaud à Sept-Îles. Mines Arnaud poursuit ses travaux de forage sur ce projet pour finaliser l'étude de faisabilité en 2011.

Mine Jeffrey poursuit sa démarche pour financer son projet de 78 M\$ pour l'exploitation souterraine de sa mine de chrysotile à Asbestos.

**Niocan** a publié un rapport technique conforme à la norme 43-101 sur les ressources en niobium du projet **Niocan**, pour lequel elle révisera le potentiel de récupération des terres rares en plus d'autres substances. L'étude de faisabilité est prévue pour 2011.

#### DIAMANT

À 360 km au nord de Chibougamau, Stornoway Diamond a déposé une nouvelle évaluation du projet, qui augmenterait sa durée de vie potentielle à 25 ans. L'étude de faisabilité et d'impact environnemental et du milieu social pour le projet diamantifère Renard, devraient être complétées à l'automne 2011. Ce projet pourrait également bénéficier de l'éventuelle route vers les Monts Otish.

## 5.2 - Développement minier

#### FER

En septembre 2010, la compagnie indienne Tata Steel annonçait un investissement de 300 M\$ pour relancer l'exploitation des mines de fer dans la région de Schefferville, fermées en 1982 par Iron Ore Company of Canada. Le projet DSO est réalisé en partenariat avec la société minière canadienne New Millennium. Le minerai de fer à haute teneur extrait à Schefferville subira un traitement de classification et sera expédié à Sept-Îles, puis sera exporté pour alimenter les aciéries européennes de Tata Steel. Les travaux de réfection de la voie ferroviaire sont en cours d'évaluation avant la prise de décision finale pour la mise en exploitation.

#### **CUIVRE ET ZINC**

Pour l'ancienne mine Langlois, dans le secteur de Lebel-sur-Quévillon, Ressources Breakwater a poursuivi les travaux de développement en vue d'une reprise de l'exploitation en 2012. Avec la fin de l'exploitation de la mine Persévérance prévue en 2012, **Xstrata Zinc** a poursuivi le développement du projet **Bracemac-McLeod** au sud de Matagami. La compagnie a annoncé un investissement de 160 M\$ pour la construction de cette mine, en vue d'y amorcer l'exploitation en 2013.

#### NICKEL, CUIVRE, COBALT ET ÉLÉMENTS DU GROUPE DU PLATINE (ÉGP)

À l'extrémité nord du Québec, 20 km au sud de la mine Raglan, Jien Canada Mining en partenariat avec Canadian Royalties, a débuté la construction des infrastructures en vue de l'exploitation des dépôts Expo et Mesamax, sur sa propriété Nunavik Nickel. La construction avait cessé en août 2008, à la suite de problèmes de financement. Le démarrage de l'exploitation du site est prévu pour 2012.

#### OR

Tout au long de l'année, Century Mining a poursuivi son programme de développement sous terre pour relancer l'exploitation de la mine Lamaque, l'une des plus anciennes mines d'or dans la région de l'Abitibi-Témiscamingue. En 2010, la compagnie a produit près de 15 000 onces d'or. En 2011, la mine devrait atteindre sa production commerciale de 100 000 onces/an et l'exploitation devrait se poursuivre sur une dizaine d'années.

Corporation Minière Osisko a réalisé d'importants travaux d'aménagement et de développement pour finaliser la mise en œuvre de son projet de mine à ciel ouvert, Canadian Malartic. L'exploitation pour une production commerciale devrait débuter au printemps 2011.

Selon une étude préliminaire de la compagnie Gestion Iamgold-Québec, le projet Westwood présente un potentiel de production d'or de 200 000 onces/an sur une quinzaine d'années. Des travaux de fonçage d'un puits d'une profondeur de 1990 mètres sont en cours depuis un an et demi. La compagnie projette de démarrer la production en 2013, à la suite d'investissements de près d'un demi-milliard de dollars.

Mines Agnico-Eagle exploite plusieurs mines aurifères en Abitibi. La compagnie poursuit présentement le développement du projet LaRonde Extension, dont la mise en production est prévue en 2011.

Mines Richmont a effectué des travaux souterrains à l'ancienne mine d'or Francoeur, dans le but d'en relancer la production. Jusqu'à présent, les infrastructures en surface ont été réaménagées et tout l'équipement requis pour le développement minier est en place. La compagnie planifie la réalisation d'essais métallurgiques sur un échantillon en vrac de 50 tonnes. À cet égard, la compagnie a obtenu les autorisations nécessaires pour aller de l'avant. Le début de la production commerciale est prévu pour 2011.

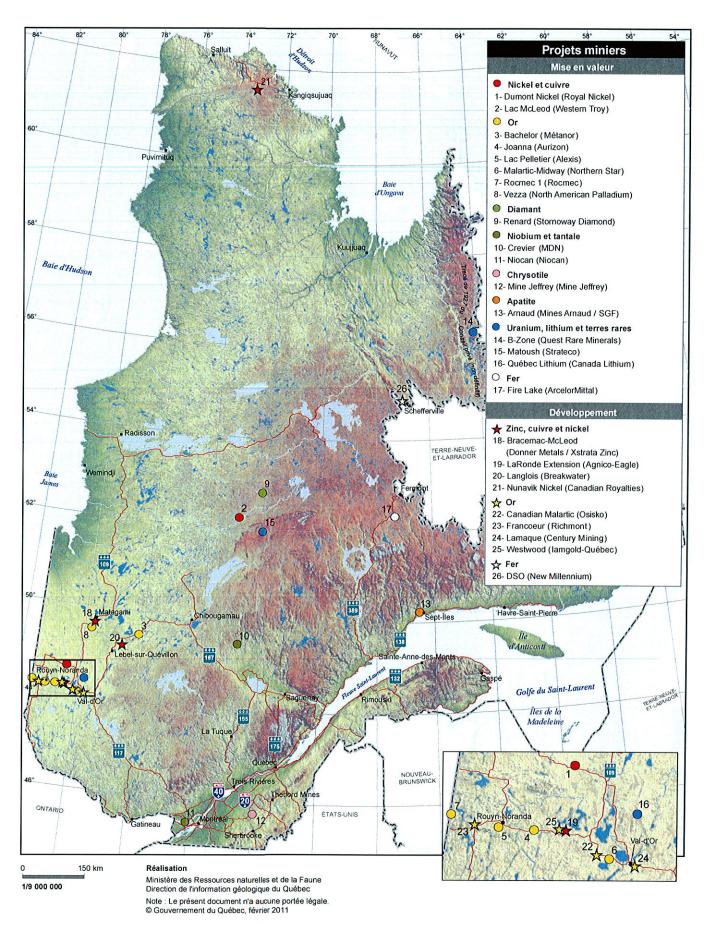



FIGURE 5.1. Localisation des projets miniers de mise en valeur et de développment au Québec en 2010.

IAB	TABLEAU 5.1 – Proiets miniers au stade de mise en valeur au Ouébec en	ers au stade de	mise en valeur	au Ouébec en 2010 (voir figure 5.1).	re 5.1).							
Site	Site Canton / SNRC / Région administrative	Projet	Compagnie		Substance(s) Réserves prouvées probables	et ,	Ressources mesurées	Ressources indiquées	Ressources présumées	Production journalière prévue de minerai	Année de mise en production prévue	Durée de production prévue
Mét	Métaux usuels : Nickel								できる。			
-	Launay / 32D09 / Abitibi- Témiscamingue	Dumont Nickel	Royal Nickel Corporation	Ni-Cu-ÉGP magmatique Exploitation à ciel ouvert	Nickel	pu	156 M tm à 0,3 % Ni	1 G tm à 0,3 % Ni	581 M tm à 0,3 % Ni	80 000 tm/j	2015	31 ans
5	2331 / 33A02 / Nord-du-Québec	Lac McLeod	Western Troy Capital Resources inc.	Intrusions porphyriques à Cu-Au-Mo Exploitation à ciel ouvert	Cuivre Molybdène Or Argent	pu	pu	18 M tm à 0,6 % Cu 0,09 % Mo 0,06 g/t Au 4,5 g/t Ag	2 M tm à 0,4 % Cu 0,08 % Mo 0,04 g/t Au 3,6 g/t Ag	6 000 tm/j	pu	9 ans
Mét	Métaux précieux : Or											
м	Le Sueur / 32F08 / Nord-du-Québec	Bachelor	Ressources Métanor inc.	Veines aurifères orogéniques Exploitation souterraine	ŏ	844 K tm à 7,4 g/t Au	192 K tm à 8,8 g/t Au	649 K tm à 7,5 g/t Au	426 K tm à 6,5 g/t Au	690 tm/j	2012	pu
4	Joannès / 32D02 / Abitibi- Témiscamingue	Joanna	Mines Aurizon Itée	Sulfures disséminés et veinules de quartz associés à un cisaillement Exploitation à ciel ouvert	ŏ	pu	27 M tm à 1,4 g/t Au	18 M tm à 1,4 g/t Au	33 M tm à 1,4 g/t Au	8 500 tm/j	pu	8 ans
2	Rouyn / 32D03 / Abitibi- Témiscamingue	Lac Pelletier	Corporation minière Alexis	Or filonien: filons de quartz-carbonates dans des roches vertes Exploitation souterraine	ŏ	168 K tm à 6,5 g/t Au	58 K tm à 8,6 g/t Au	222 K tm à 8,6 g/t Au	420 K tm à 8,4 g/t Au	620 tm/j	pu	1 an
9	Fournière / 32D01 / Abitibi- Témiscamingue	Malartic- Midway	Corporation minière Northern Star	Veines aurifères orogéniques Exploitation souterraine	Or	pu	pu	2,4 M tm à 3,7 g/t Au	2,0 M tm à 3,6 g/t Au	pu	pu	pu
_	Dasserat / 32D04 / Abitibi- Témiscamingue	Rocmec 1	Corporation minière Rocmec inc.	Or filonien: filons de quartz-carbonates dans des roches vertes Exploitation souterraine	ō	pu	125 K tm à 7,0 g/t Au	445 K tm à 6,4 g/t Au	1,5 M tm à 7,4 g/t Au	pu	pu	pu
∞	32F12 / Nord-du-Québec	Vezza	North American Palladium Ltd	Veines aurifères orogéniques Exploitation souterraine	ŏ	pu	193 K tm à 6,1 g/t Au	1,3 M tm à 5,9 g/t Au	754 K tm à 5,0 g/t Au	750 tm/j	2012	pu

TAB	TABLEAU 5.1 – Projets miniers au stade de mise en valeur au Québec en	rs au stade de	e mise en valeur	au Québec en 2010 (voir figure 5.1).	re 5.1).							
Site	Site Canton / SNRC /	Projet	Compagnie	Description sommaire du gisement	Substance(s) Réserves prouvées	Réserves prouvées et	Ressources mesurées	Ressources	Ressources orésumées	ces Production	on Année de	Durée de
	Région administrative			Type d'exploitation		probables		-		•		
Dia	Diamant											
6	33A16 / Nord-du-Québec	Renard	Stornoway Diamond	Gisement de diamants dans les kimberlites	Diamant	pu	pu	27 M tm à 0,89 c/t	31 M tm à 0,56 c/t	ià 5 000 tm/j	íj 2013	25 ans
				Exploitation à ciel ouvert et souterraine							·	
ž	Niobium et tantale											
10	Crevier / 32H07 / Saguenay–Lac-St-Jean	Crevier	MDN inc.	Dykes de syénite à néphéline, complexe igné alcalin	Niobium Tantale	pu ·	12 M tm à 0,2 % Nb ₂ O ₅	13 M tm à 0,19 % Nb ₂ O ₅	15 M tm à 0,17 % Nb ₂ O ₅	ià 4 000 tm/j	íj 2013	18 ans
				Exploitation à ciel ouvert			0,02 % Ta ₂ O _s	0,02 % Ta ₂ O ₃	U,U3 % Ta,O,			
<del>_</del>	Lac des Deux- Montagnes / 31C09 /	Niocan	Niocan inc.	Gisement associé aux carbonalites	Niobium	pu	pu	pu	pu	2 500 tm/j	f) En attente du CA du MDDEP	17 ans
ਤਿ	Chrysotile			Lypioliation souterianie								
12	Shipton / 21E13 / Estrie	Mine Jeffrey	Mine Jeffrey inc.	Gisement d'amiante chrysotile dans des roches ultramafiques	Chrysotile	pu	pu	pu	P _E	20 000 tm/j	ν) 2011	21 ans
				Exploitation souterraine	:							
Apa	Apatite											
13	22J02 / Côte-Nord	Arnaud	Mines Arnaud inc.	Complexe mafique lité Exploitation à ciel ouvert	Apatite	132 M tm à 6 % P,O _c	pu	pu pu	pu	23 000 tm/j	1/j 2015	30 ans
2	Uranium, lithium et terres rares	ıres										
4	24A08 / Nord-du-Québec	B-Zone	Quest Rare Minerals Corporation	Pegmatites et aplites à terres rares et yttrium dans un granite peralcalin Exploitation à ciel ouvert	Terres rares Yttrium Zirconium Niobium	pu	pu	pu	115 M tm à 1 % ETR,O 0,28 %	4 000 tm/j	j 2015	25 ans
				·					7,97,3 ZrO,2 0,21,8 Nb,0,			

TAB	8LEAU 5.1 – Projets mini	ers au stade d	le mise en valeur	IABLEAU 5.1 - Projets miniers au stade de mise en valeur au Québec en 2010 (voir figure 5.1).	ure 5.1).							<b>!</b>
Site	Site Canton / SNRC / Région administrative	Projet	Compagnie	Description sommaire du gisement Type d'exploitation	Substance(s) Réserves prouvées et probables	Réserves Ressource prouvées et mesurées probables	Ressources mesurées	Ressources indiquées	Ressources présumées	Ressources Ressources Production mesurées indiquées présumées journalière prévue de minerai	Année de mise en production prévue	Durée de production prévue
15	32P16 / Nord-du-Québec	Matoush	Ressources Strateco inc.	Gisement d'uranium associé à des zones de cisaillement	Uranium	pu	pu	436 K tm à 0,78 % U ₃ O ₈	1,2 M tm à 0,50 % U ₃ O ₈	750 tm/j	2013	7 ans
				Exploitation souterraine				•				
16	16 La Corne / 32C05 / Abitibi- Témiscamingue	Québec Lithium	Canada Lithium Corporation	Pegmatites granitiques à spodumène Exploitation à ciel ouvert	Lithium	15 M tm à 1,2 % Li ₂ O	15 M tm à 6 M tm à 1,2 % Li ₂ O 1,2 % Li ₂ O	41 M tm à 58 M tm à 1,2 % Li ₂ O 1,2 % Li ₂ O	58 M tm à 1,2 % Li ₂ O	2 950 tm/j	2013	15 ans
Fer												
17	17 Bergeron / 23806 / Côte-Nord	Fire Lake	ArcelorMittal Mines Canada	Formations de fer de type Algoma Exploitation à ciel ouvert	Fer	nd	pu	ри	pu	14 000 tm/j	14 000 tm/j (exploitation nd saisonnière depuis 2006)	pu

NOTES: La liste des abréviations et leur signification sont présentées à l'annexe 2. Les données compilées de ce tableau demeurent préliminaires et ont été colligées d'après les informations publiées par les sociétés. La distinction entre réserves prouvées et probables et entre ressources mesurées, indiquées et présumées, est définie selon la norme canadienne 43-101.

	IA	TABLEAU 5.2 - Projets miniers au stade de développement au Québec	iers au stade	de développement	t au Québec en 2010 (voir figure 5.1)	ure 5.1)							
Publishers   Pub	S:	e Canton /	Projet	Compagnie		Substance(s)			Ressources	Ressources	Production	Année de	Durée de
15 Section		Région administrative			uu giseiment Type d'exploitation		prouvees et probables		ınaıdnees	presumees	journaliere prévue de	mise en production	production prévue
Execut	Mé	taux usuels: zinc, cuivre	et nickel								Inmeral	hickne	
1982   Michael   Donner Metals   Exploitation souteraine   Capie   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   1985   198	18	Le Sueur /	Bracemac-	Xstrata Zinc /	Sulfures massifs volcanogènes	Zinc	3.7 M tm à	2.6 M tm à	1.0 M tm à	2 6 M tm 3	2 500 tm/i	2013	A 20c
Ungava		32F12 /	McLeod	Donner Metals			9,6 % Zn	11.3 % Zn	89%70	88% 7n	[	2	
Subtraction   Subtract   Subtra		Ungava		Ltd		ŏ	1,3 % Cu	1,6 % Cu	1,1 % Cu	1,3 % Cu			
Bounquet   Extension Minos   Sulfures massis volcanogènes Zinc   17,5 M trin h   d   18 M trin   9,3 M trin						Argent	28 g/t Ag	37 g/t Ag	21 g/t Ag	39 g/t Ag			
Broadure   Extension   Mines   Sulfures massis volcanogene   Sulfure supplied   Control   Cont		- 1					0,43 g/t Au	0,45 g/t Au	0,56 g/t Au	1,1 g/t Au			
DOB   A partice Eagle life inches en or	19		Extension	Mines	Sulfures massifs volcanogènes		17,5 M tm à	pu	1,8 M tm à	9,8 M tm à	6 900 tm/j	2011	11 ans
Particular   Par		32D08 /	LaRonde	Agnico-Eagle Itée	riches en or	Cuivre	5,8 g/t Au		2,7 g/t Au	6,4 g/i Au	•		
Majoris   Langlois   Resources   Sulfures masslis volcanogenes   Zi Min   Zi A Min   A Si A Mi		Abitibi-l emiscamingue				ŏ	20 g/t Ag		22 g/t Ag	28 g/t Ag			
Color   Colo						Argent	0,3 % Cu		0,3 % Cu	0,3 % Cu			
Peel							0,8 % Zn		0,8 % Zn	2,1 % Zn			
The control of the	c	1	- I and a s	Dogge	3:		0,03 % PB		0,08 % Pb	0,06 % Pb			
The control of the	7		Laligiois	Resolutces Brookwater Itéa	Sullures massifs voicanogenes		5,1 M tm a	2,4 M tm a		1,5 M tm à	2 570 tm/j	2012	10 ans
H1		Nord-du-Ouébec		DICANWAREI IEEE		Culvie	9,7 % Zn	9,4 % Zn		8,U % Zn			-
H11		·				Argent	0,0 % (4	0.06 4/4 411		0,5 % Cu			
H11						, agent	45 p/t Ap	0,00 g/t Au 41 g/t Aa	0,00 g/t Au 51 g/t Ao	0,09 g/L Au 44 g/H Ag			
rd-du-Québec         Nickel         Royalties inc.         Exploitation à ciel ouvert et Cobalt         Course (Cobalt	21		Nunavik	Canadian	Ni-Cu-ÉCP magmatione	Nickel	nd br.	560 K tm 3	21 M tm 2	5 M th	1 = 00 +m2 /:	204.2	
Proceedings of the composition of the control of			Nickel	Royaltine Inc	a ca col magniandae	Citizen	2	300 N UII A	21 M III d	) M III a	4 500 un/j	7107	DE C
Souterraine   COP   0,04 % CO   0,05 % CO   0,04 % CO   0,05 % C		77077	I AICKEI	NOyalties IIIC.		Culvie		1,93 % N	U,93 % NI	0,72% 0,72%			
Dredeleux or   Canadian   Corporation   Prophyre aurifere   Or   Canadian   Corporation   Canadian   Can						CODAIL ÉOD		1,50 % Cu	1,15 % Cu	0,92 % Cu			
Orange   Canadian   Corporation   Corporation   Canadian						구 (		0,04 % Co	0,05 % Co	0,04 % Co			
27.8 t Pd   20.1 t Pd   20.11 t Pd   20						<u>ځ</u>		0,60 g/t Pt	0,54 g/t Pt	0,51 g/t Pt			
précieux or l'incire d'anadian Corporation Prophyre aurifère d'anadian Corporation Prophyre aurifère d'anadian Corporation Prophyre aurifère d'anadian Corporation Prophyre aurifère d'anadian Corporation et remplacement Or 246 M tm à nd 70,1 M tm² 20 M tm à 55 000 tm/j 2011  246 M tm à nd 70,1 M tm² 20 M tm à 55 000 tm/j 2011  246 M tm à nd 70,1 M tm² 20 M tm à 55 000 tm/j 2011  247 M tm à 3,4 M tm à 3,4 M tm à 19,4 M tm à 3000 tm/j 2011  250 M tm à 3,4 M tm à 1,1 g/t Au 3,7 g/t Au 5,1 g/t Au 4,5 g/t Au 5,1 g/t Au 4,5 g/t Au 4,5 g/t Au 5,1 g/t Au 1,4 g/t Au 4,5 g/t Au 1,4 g/t Au 2,000 tm/j 2013  250 M tm à 3,000 tm/j 2013  250 M tm à 2,000 tm		-						2,7 g/t Pd	2,2 g/t Pd	2,0 g/t Pd			
Trible Canadian Corporation Porphyre aurifere Or 246 M tm à nd 70,1 M tm à 20 M mà 55 000 tm/j 2011  246 M tm à nd 70,1 M tm à 20 M mà 55 000 tm/j 2011  246 M tm à nd 70,1 M tm à 20 M mà 55 000 tm/j 2011  246 M tm à nd 70,1 M tm à 20 M mà 55 000 tm/j 2011  246 M tm à nd 76,1 M tm à 20 M mà 50 0 tm/j 2011  246 M tm à nd 76,1 M tm à 20 M mà 500 tm/j 2011  246 M tm à 3,4 M tm à 3,4 M tm à 3,4 M tm à 3,00 tm/j 2011  2504 / Sqrt-du 4,5 glt-du 6,0 glt-du 7,5 glt-du 11,4 glt-d	Α	tally orderigany for						0,10 g/t.Au	U, 14 g/t.Au	0,13 g/t Au	the second secon		
Adiatric minibre Osisko Exploitation a ciel ouvert 1,13 g/t Au 1 g/t Au ¹ 0,73 g/t Au 202 K tm a 202	5	Equation /										第二次 第二次 第二次 第二次 第二次 第二次 第二次 第二次	
Tartice minere Usisko Exploitation à ciel ouvert 1,13 g/t Au 1 g/t Au 1 0,73 g/t Au 1 1 g/t Au 1 0,73 g/t Au 1 1 g/t Au 1 0,73 g/t Au 1 1 g/t Au 202 k/t m à 202 k/t m à 202 k/t m à 600 tm/j 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 2013 204 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 2013 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203 / 2011 203	77		Canadian	Corporation	Porphyre auritère	ŏ	246 M tm à	pu	70,1 M tm à	20 M tm à	55 000 tm/j	2011	12 ans
auchastel, associés à un cisaillement de fight training linc.  Exploitation souterraine  Logy than a sociés à un cisaillement or 616 K tm à nd 7,5 gt Au 6,0 gt Au 6,0 gt Au 6,0 gt Au 6,0 gt Au 6,9 gt Au 7,5 gt Au 6,0		32UUT / Abitibi-Témiscamingua	Malartic	miniere Osisko			1,13 g/t Au		1 g/t Au¹	0,73 g/t Au			
tibi-Témiscamingue Exploitation souterraine Corporation Figures auxiliared Certury Mining Veines auxiliared South Solution souterraine Corporation Exploitation souterraine Corporation Exploitation souterraine Solution Souterraine Corporation Exploitation souterraine Solution Soluti	33	1			-								
tibi-Témiscamingue Exploitation souterraine corporation Exploitation souterraine Exploitation souterraine Exploitation souterraine Corporation Exploitation souterraine Corporation Exploitation souterraine Signal A,5 g/t Au 4,5 g/t Au 5,7 g/t Au 11,4 g/t Au 500 tm/j 2013  207/ Québec inc. riches en oi, stockwerk et sulfures disséminés Exploitation souterraine Exploitation à ciel ouvert 60 % Fe 60 % Fe 57 % Fe 7 mois/année	7		rrancoeur	Mines Kichmont	Alteration et remplacement	ŏ	616 K tm à	nd	76 K tm à	202 Kitm à	600 tm/j	2011	4 ans
Lamaque Century Mining Veines aurifères orogéniques Or 7,7 M tm à 3,4 M tm à 4,9 M tm à 20 M tm à 3 000 tm/j 2011  Corporation Exploitation souterraine		Abitibi-Témiscamingue		<u>;</u>	resource a un cisamentent	·	0,3 g/t Au		ny 1/8 c' /	o'o 8/1 Au			
Tablicaçue   Century Mining Veines aurileres orogeniques   Croporation   Exploitation souterraine   4,6 g/t Au   4,5 g/t Au   5,1 g/t Au   5,0 g/t A	2	İ			Exploitation souterraine	(						:	
Libi-Témiscamingue Exploitation souterraine 4,5 gt Au 4,5 gt Au 5,1 gt Au 5,0 gt Au 6,0 gt Au 6,	7		Lamaque	Century Mining	Veines auriferes orogeniques	ŏ	7,7 M tm à	3,4 M tm à	4,9 M tm à	20 M tm à	3 000 tm/j	2011	11 ans
1squet / Westwood Gestion lamgold- Sulfures massifs volcanogenes Or nd nd 408 K tm à 9 M tm à 2 300 tm/j 2013  207 /  Québec inc. riches en or, stockwerk et ribi-Témiscamingue  Exploitation souterraine  Exploitation à ciel ouvert  Capital Corp. Exploitation à ciel ouvert  15 / BSW de Fe 57 % Fe 7 mois/année		Abitibi-Témiscamingue		Corporation			4,6 g/t Au	4,5 g/t Au	5,1 g/t Au	5,0 g/t Au			
Tible Total Corp.  Exploitation à ciel ouvert  Total T	25		Westwood	Cestion Jampold	Sulfusor marrife no lean advance	d		1	74 004				
tibi-Témiscamingue (7.2 gir Au 11,4 gir Au 11,4 gir Au 11,4 gir Au 11,4 gir Au 15 gir Au 11,4 gir Au 15 gi	ì		Non-Maria	Ouéher inc	Juildes Iliassiis Volcailogenes riches en or stockwerk et	5	D.	Da	408 K tm a	y M Im a	2 300 tm/j	2013	16 ans
Exploitation souterraine  15 / DSO New Millennium Formations de fer enrichies Fer 64 M tm à 22 M tm à 45 M tm à 7 M tm à 25 000 tm/j 2012  26-Nord Capital Corp. Exploitation à ciel ouvert 60 % Fe 60 % Fe 58 % de Fe 57 % Fe 7 mois/année		Abitibi-Témiscamingue	•	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	sulfures disséminés				ر, ع لار Au	1,4 g/t Au	٠		
15 / DSO New Millennium Formations de fer enrichies Fer 64 M tm à 22 M tm à 45 M tm à 7 M tm à 25 000 tm/j 2012 E-Nord Capital Corp. Exploitation à ciel ouvert 60 % Fe 60 % Fe 58 % de Fe 57 % Fe 7 mois/année													
15 / DSO New Millennium Formations de fer enrichies Fer 64 M tm à 22 M tm à 45 M tm à 7 M tm à 25 000 tm/j 2012 re-Nord Capital Corp. Exploitation à ciel ouvert 60 % Fe 60 % Fe 58 % de Fe 57 % Fe 7 mois/année	F.				<u>Exploitation</u> souterraine	The state of the s				- 1 S. N. N.			
13 / USO New Millennium Formations de fer enrichies Fer 64 M tm à 22 M tm à 7 M tm à 25 000 tm/j 2012  -e-Nord Capital Corp. Exploitation à ciel ouvert 60 % Fe 60 % Fe 58 % de Fe 57 % Fe 7 mois/année	2			A Wilder College College Care	CONTROL OF COMPANY OF CONTROL OF THE PARTY O								
	7		282	New Millennium Capital Corp.	Formations de fer enrichies Exploitation à ciel ouvert	rer	64 M tm à 60 % Fe	22 M tm à 60 % Fe	45 M tm à 58 % de Fe	7 M tm à 57 % Fe	25 000 tm/j 7 mois/année	2012	15 ans
	[												

NOTES : La liste des abréviations et leur signification sont présentées à l'annexe 2. Les données compilées de ce tableau demeurent préliminaires et ont été colligées d'après les informations publiées par les sociétés. La distinction entre réserves prouvées et probables et entre ressources mesurées, indiquées et présumées, est définie selon la norme canadienne 43-101. 1- Total des ressources mesurées et indiquées.

## **CHAPITRE 6 - EXPLOITATION MINIÈRE**

# 6.1 - Données économiques et statistiques sur l'exploitation minière

Martin Labrecque

#### EXPÉDITIONS MINIÈRES

En 2009, le Québec était la deuxième plus importante province canadienne en termes de valeur d'expéditions minières, devancée de peu par l'Ontario.¹

Ainsi, la valeur des expéditions du Québec en 2009 (minéraux métalliques et non métalliques) s'élèverait à un sommet historique de 6,2 G\$, soit une valeur pratiquement identique à celle enregistrée pour l'année 2008 (tableau 6.1). La valeur des expéditions pour l'ensemble du Canada en 2009 a, pour sa part, diminué de 32 % par rapport à l'année précédente en raison de la crise économique mondiale.

TABLEAU 6.1 - Valeur des expéditions de produits miniers par région administrative du Québec en 2008 et 2009p.

Dágians	۸	<b>/\\$</b>
Régions -	2008	2009р
01 Bas-Saint-Laurent	С	Ċ
02 Saguenay-Lac-Saint-Jean	C ·	С
03 Capitale-Nationale	166	150
04 Mauricie	35	20
05 Estrie	62 .	73
06 Montréal	С	С
07 Outaouais	24	20
08 Abitibi-Témiscamingue	977	905
.09 Côte-Nord	1 410	1 716
10 Nord-du-Québec	1 164	1 259
11 Gaspésie–Îles-de-la-Madeleine	c	С
12 Chaudière-Appalaches	77	87
13 Laval	23	35
14 Lanaudière	197	196
15 Laurentides	87	74
16 Montérégie	1 610	1 339
17 Centre-du-Québec	36	27
Total	6 162	6 240

p : les données pour 2009 sont préliminaires.

Source : Institut de la statistique du Québec.

Quelques éléments majeurs permettent d'expliquer cette performance du Québec comparativement à celle de l'ensemble du Canada. D'abord, les expéditions de certaines substances ont augmenté au Québec entre 2008 et 2009 (ex.: fer, nickel, zinc). Ensuite, l'or, qui est une substance importante pour le secteur minier du Québec en termes de production, a vu son prix s'apprécier, notamment en raison de son rôle de valeur refuge lors de périodes d'incertitude économique. Enfin, les prix se sont effondrés pour plusieurs substances qui sont principalement produites dans les autres provinces canadiennes et que le Québec ne produit pas ou très peu (potasse, soufre, diamant, etc.).

Des données plus détaillées sont disponibles à l'adresse : http://www.mrnf.gouv.qc.ca/mines/statistiques/index.jsp

#### SUBSTANCES PRODUITES AU QUÉBEC

Au Québec, le fer, l'or, le nickel, la pierre concassée, le titane, le zinc et le ciment sont les principales substances produites en termes de valeur d'expéditions (tableau 6.2).

#### SOCIÉTÉS EXPLOITANT LES MINES DE MINERAI MÉTALLIQUE AU QUÉBEC

Pendant la seconde moitié de l'année 2010 (tableau 6.3), il y avait au Québec 12 exploitants miniers qui exploitaient 16 mines de minerai métallique.

#### INVESTISSEMENTS MINIERS

En plus des dépenses pour des travaux d'exploration et de mise en valeur, le secteur minier génère des investissements considérables en aménagement de complexes miniers, que ce soit pour de nouveaux complexes miniers ou pour ceux existants. Ces investissements comprennent les travaux d'aménagement, les immobilisations et les réparations (tableau 6.4).

### 6.2 - Exploitation minière

Katrie Bergeron, Martin Bernatchez, Denis Blackburn, Pierre Buteau, Martin Dumas, Germain Girard, Denis Raymond, N'Golo Togola

#### SUBSTANCES MÉTALLIQUES

La figure 6.1 montre l'emplacement des mines actives au Québec en 2010, tandis que le tableau 6.5 présente les statistiques minières pour la production de substances métalliques au Québec.

#### Fer

ArcelorMittal Mines Canada a travaillé sur un projet d'investissement très important pour ses installations du Mont-Wright.

c : données confidentielles.

¹⁻ Selon les données préliminaires de l'Institut de la statistique du Québec et de Ressources naturelles Canada.

	. 2	2008	20	009р
Substances	Quantité	Valeur (M\$)	Quantité	Valeur (M\$)
Minéraux métalliques			A Maria de Maria.	
Argent (t)	164	84	160	86
Cadmium (t)	211	1	220	. 1
Cobalt (t)	364	33	388	17
Cuivre (t)	37 21 <i>7</i>	276	29 580	1 <i>7</i> 1
Fer (minerai) (kt)	13 358	С	14 500	C .
-liménite (kt)	е			
Nickel (t)	21 707	504	27 181	462
Niobium (t)	4 400	С	4 329	С
Or (kg)	27 603	825	28 013	985
Platinoïdes (kg)	С .	С	c	С
Plomb (t)	442	1	80	< 1
Sélénium (t)	16	1	20	1
Tellure (t)	3	1	2	< 1
Zinc (t)	164 <i>7</i> 59	329	201 689	373
Total - Minéraux métalliques	-	4 438	-	4 631
Minéraux non métalliques				
Amiante (kt)	С	c	c	. с
Chaux (kt)	661	78	608	73
Ciment (kt)	2 870	391	2 562	369
Pierre concassée (kt)	41 099	394	43 735	428
Sable et gravier (kt)	22 265	108	17 960	92
Sel (t)	С	c	c	С
Silice (kt)	541	14	449	19
Soufre (kt)	161	32	161	24
Titane (t) (dioxyde)	<b>c</b> .	С	С	С
Tourbe (kt)	376	65	345	62
Total - Minéraux non métalliques	-	1 724		1 609
Grand total	-	6 162	: <del>-</del>	6 240

p : les données pour 2009 sont préliminaires. c : données confidentielles.

Source : Institut de la statistique du Québec.

La compagnie veut augmenter sa capacité de production de 60 % pour passer de 15 à 24 Mt/an de concentré de fer. Elle veut également construire une nouvelle usine de bouletage à Port-Cartier. Au premier semestre de 2011, le conseil d'administration de la multinationale basée au Luxembourg devrait prendre une décision finale pour la réalisation de ce projet dépasse les deux milliards de dollars et créera près de 1000 emplois.

En juillet 2010, Consolidated Thompson Iron Mines (CTIM) a terminé la construction et l'aménagement de son complexe minier afin de démarrer l'exploitation de son gisement du Lac Bloom. La compagnie minière veut atteindre une

production de 8 Mt/an de concentré de fer en 2011. D'ici deux à trois ans, CTIM planifie l'augmentation de sa capacité de production à 16 Mt/an pour la mine du Lac Bloom.

Jusqu'au printemps 2009, Rio Tinto, Fer et Titane alimentait son complexe métallurgique situé à Sorel-Tracy exclusivement avec du minerai d'ilménite en provenance de la mine du Lac Tio (2,5 Mt/an) sur la Côte-Nord. Depuis, l'usine reçoit également du minerai de sa mine de Madagascar (0,9 Mt/an). La compagnie a élaboré un plan pour prolonger la vie de sa mine du Lac Tio au moins jusqu'en 2050.

Le Québec est aussi producteur de petites quantités de bismuth, d'argile, de graphite, de mica et de talc.

TABLEAU 6.3 - Soc	ciétés exploitant les mines de r	ninerai métallique du Québ	ec.
Nom de la mine	Nom de la société	Statut de la société	Siège social
Barry	Ressources Métanor	publique	Val-d'Or
Beaufor	Mines Richmont	publique	Rouyn-Noranda
Casa Berardi	Mines Aurizon Itée	publique	Vancouver
Géant Dormant	North American Palladium	publique	Toronto
Goldex	Mines Agnico-Eagle	publique	Toronto
Kiena	Mines d'Or Wesdome	publique	Toronto
Lac Bloom	Consoildated Thompson	publique	Montréal
-Lac-Herbin	- Corporation-minière-Alexis-	publique	-Toronto
Lac Tio	Rio Tinto Fer et Titane	filiale du groupe Rio Tinto	Londres (R-U)
Lapa	Mines Agnico-Eagle	publique	Toronto
LaRonde	Mines Agnico-Eagle	publique	Toronto
Mont-Wright	ArcelorMittal, Mines Canada	filiale d'ArcelorMittal	Luxembourg
Mouska	Gestion lamgold-Québec	filiale d'Iamgold Corp.	Toronto
Niobec	Gestion lamgold-Québec	filiale d'Iamgold Corp.	Toronto
Persévérance	Xstrata Canada	filiale de Xstrata Plc.	Zoug (Suisse)
Ragian	Xstrata Canada	filiale de Xstrata Plc.	Zoug (Suisse)

^{*} Exact en date du 31 août 2010

Source : Ministère des Ressources naturelles et de la Faune.

	Ab	itibi-Témiscaming	ue		Côte-Nord			Nord-du-Québec			Autres régions			Total	
	Expl et mev	Aménagement	Total	Expl et mev	Aménagement	Total	Expl et mev	Aménagement	Total	Expl et mev	Aménagement	Total	Expl et mev	Aménagement	Total
2006	96	285	382	25	228	253	164	352	516	9	53	62	295	918	1 213
2007	152	330	481	40	252	291	270	509	780	15	57	72	476	1 148	1 624
2008	182	426	608	32	382	413	290	602	891	22	76	98	526	1 485	2 011
2009	166	820	987	14	497	510	185	263	447	15	82	96	379	1 661	2 041
2010ir	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	576	1 596	2 172

La catégorie « aménagement » comprend les données en immobilisations et les réparations sur et hors d'un site minier. Les données pour 2010 sont les intentions révisées (ir).

Source des données : Institut de la statistique du Québec.

#### Cuivre et zinc

L'exploitation de la mine **Persévérance** a débuté à l'automne 2008 et devrait se poursuivre au moins jusqu'en 2012, selon les dirigeants de **Xstata Canada Corporation**, division **Xstrata Zinc Canada**. En 2010, le niveau de minerai extrait a atteint 1,0 Mt; ce niveau devrait être maintenu en 2011.

Nickel, cuivre, cobalt et éléments du groupe du platine (ÉGP)

Xstrata Canada Corporation, Division Xstrata Nickel Canada extrait du minerai de sa mine Raglan depuis 13 ans et travaille présentement sur un scénario qui permettrait de prolonger la durée de vie au-delà de 2030. Toutefois, le niveau d'extraction du minerai serait maintenu à 1,3 Mt/an en 2011.

#### Or

En 2010, afin d'abaisser ses coûts, Corporation minière Alexis a commencé à traiter le minerai de la mine du Lac Herbin

à l'ancienne usine Aurbel. La production annuelle totale s'élève à 22 637 onces d'or après récupération pour près de 155 000 tonnes de minerai, dû à des teneurs plus basses que prévues à l'entrée du circuit d'usinage. Les réserves de la mine du Lac Herbin seraient suffisantes pour assurer une exploitation pour au moins 5 ans.

Après avoir cessé l'exploitation de la mine **Troilus** en 2008, **Corporation minière Inmet** continue à produire du concentré de cuivre et de l'or à partir des piles de minerai accumulées près de l'usine depuis le début des opérations en 1996. Pour les deux prochaines années, la compagnie s'affaire au démantèlement des infrastructures et à la restauration du site minier.

Gestion Iamgold-Québec continue d'utiliser les installations de traitement de l'ancienne mine Doyon de Preissac pour traiter le minerai de la mine Mouska et la maintiendra opérationnelle pour traiter le minerai qui proviendrait éventuellement du projet Westwood en 2013.

Mines Agnico-Eagle exploite la mine polymétallique LaRonde (cadillac) et les mines aurifères Goldex (Val-d'Or), et Lapa (Rivière-Héva). Goldex a décidé d'augmenter la capacité d'extraction journalière de 6900 à 8000 tonnes en 2011; ce faisant la production annuelle d'or pourrait atteindre près de 175 000 onces. À la mine Lapa, la production a été supérieure de 500 000 tonnes à celle initialement prévue, pour une production annuelle de plus de 100 000 onces d'or.

Depuis la reprise des opérations en 2007, la compagnie Mines Aurizon a poursuivi son programme de forage à la mine Casa-Berardi-pour-renouveler-ses-réserves afin-de-maintenir son niveau actuel de production. En 2010, l'extraction de plus de 700 000 tonnes de minerai a permis la production de près de 150 000 onces d'or.

Remise en exploitation en 2005, la mine **Kiena**, propriété de **Mines d'Or Wesdome**, a extrait près de 300 000 tonnes de minerai pour une production de plus de 32 000 onces d'or en 2010.

Mines Richmont a traité plus de 100 000 tonnes de minerai à son usine Camflo en provenance de la mine **Beaufor**. Les réserves prouvées et probables sont de près de 300 000 tonnes de minerai au 31 décembre 2010.

En janvier 2010, North American Palladium, nouveau propriétaire de la mine d'or Géant Dormant, a atteint la production commerciale. En cours d'année, la compagnie aurait pratiquement doublé ses réserves. À cet égard, elle approfondi son puits de production de 200 mètres pour développer d'autres niveaux dans la mine en 2011.

En octobre 2010, **Ressources Métanor** a cessé sa production à la mine **Barry**. Actuellement, elle étudie la possibilité de construire un concentrateur sur le site.

#### Niobium

Gestion Iamgold-Québec a maintenu une production relativement stable à sa mine Niobec, avec des réserves pour plus de 15 ans. La consommation de niobium est principalement liée à la fabrication de certains types d'acier de spécialité. L'agrandissement de l'usine a été terminée en 2010. Ces nouvelles installations permettront d'augmenter de 24 % la capacité de traitement. La mine Niobec est exploitée depuis 1975 et sa durée de vie est assurée jusqu'en 2024.

#### SUBSTANCES NON MÉTALLIQUES

La valeur des expéditions de minéraux industriels telle qu'établie par l'Institut de la statistique du Québec était de 723 M\$ en 2010 (données prévisionnelles) comparativement à 630 M\$ en 2009, soit une augmentation de 13 % de la valeur des expéditions minérales. Ces chiffres n'incluent pas les expéditions de calcaire et de dolomie qui sont regroupées avec celles de la pierre. Ces données ne comprennent pas non plus la valeur des expéditions de sable et de gravier.

La figure 6.1 montre la localisation des mines de substances non métalliques et l'information relative à ces mines est colligée au tableau 6.6. Mentionnons que les mines de substances non métalliques sont celles qui possèdent actuellement des baux miniers. Les substances non métalliques (minéraux industriels) exploitées au Québec en 2010 comprennent l'amiante chrysotile, le graphite, le mica, le sel gemme, le feldspath potassique et la silice.

La mine Black Lake maintient son niveau de production des dernières années, mais les réserves de fibres de chrysotile s'épuisent pour Lac d'Amiante du Canada.

Mine Jeffrey poursuit l'exploitation de sa mine à ciel ouvert.

Le graphite en paillettes est extrait de la mine du Lac-des-Îles au sud de Mont-Laurier (Timcal Canada).

Les Produits Mica Suzorite exploite sa mine du Lac Letondal depuis 1970. Normalement, la compagnie extrait du minerai pendant quelques mois pour alimenter son usine de transformation à Boucherville et emmagasine des inventaires sur un plan quinquennal. Les réserves sont suffisantes pour plusieurs années.

La production de Mines Seleine de la Société canadienne de Sel est stable et suit la demande sur les marchés.

La silice provient en partie des mines à Saint-Rémi-d'Amherst, Saint-Canut, Saint-Donat. De plus, **Silicium Québec** exploite et traite son minerai à **Petit lac Malbaie**. La production est destinée à alimenter l'usine de silicium de Bécancour.

Dentsply Canada extrait du feldspath à des fins de céramiques dentaires sur le site Othmer. L'exploitation étant sporadique, des travaux d'excavation devront être exécutés prochainement pour refaire les réserves d'alimentation de l'usine.

#### PIERRES INDUSTRIELLES

On retrouve à la figure 6.2, la localisation des carrières de pierres industrielles au Québec. L'information relative à ces carrières est colligée au tableau 6.7

Les pierres industrielles exploitées au Québec en 2010 sont le calcaire, la dolomie, le marbre, la quartzite, le grès et le shale. Le calcaire, la dolomie et le marbre sont exploités à des fins industrielles dans quatorze carrières pour la production de chaux vive, de produits granulés (amendements, charges minérales, granules) ou de ciment. Les principales sources de silice sont les quartzites, les grès ainsi que les dépôts de sables naturels. Des shales (schistes argileux) sont extraits d'une carrière de la région de Montréal et destinés à la production de briques.

La compagnie **Graymont** a construit une usine de déchiquetage de résidus de bois de construction pour alimenter le four vertical à son usine de **Marbleton**. À sa carrière de **Bedford**, elle a obtenu un important contrat pour produire 350 000 tonnes de pierre concassée nécessaire à la construction d'un échangeur autoroutier.

#### PIERRE ARCHITECTURALE

La figure 6.3 montre la localisation des carrières de pierre architecturale exploitées au Québec en 2010. Les caractéristiques de chacune de ces carrières se trouvent au tableau 6.8.

Quatre-vingt-seize (96) carrières de pierre architecturale sont exploitées actuellement au Québec. Le secteur de Rivière-à-Pierre-avec-ses-seize-carrières-constitue-la-principale-zone d'extraction de pierre dimensionnelle au Québec. Les secteurs de Saint-Nazaire et Chute-des-Passes avec quatre carrières chacun, ainsi que les secteurs de Saint-Alexis-des-Monts et Saint-Didace avec cinq carrières en exploitation, constituent également d'autres zones intéressantes pour l'exploitation de la pierre architecturale.

En 2010, des investisseurs québécois et européens ont relancé la carrière d'ardoise Glendyne à Saint-Marc-du-Lac-Long, favorisant le retour en emploi pour 250 travailleurs.

#### **TOURBE**

La localisation des tourbières au Québec est indiquée à la figure 6.2. L'information relative à ces exploitations de tourbe est colligée au tableau 6.9.

En 2010, le Québec comptait 17 producteurs de tourbe qui exploitaient 35 sites situés principalement dans six régions, dont le Bas-Saint-Laurent, le Centre-du-Québec, la Côte-Nord, et le Saguenay—Lac-Saint-Jean, la région Chaudière-Appalaches et la Capitale-Nationale. Après quelques années de production particulièrement difficiles en raison des conditions climatiques, la production de 2010 peut être qualifiée d'exceptionnelle avec une hausse de 20 % par rapport à 2009, selon les informations préliminaires. Des conditions climatiques caractérisées par de longues périodes d'ensoleillement, et par un niveau de précipitation bien en-dessous des normales auront permis à l'industrie de rétablir ses inventaires à des seuils normaux. La plupart des producteurs ont même été en mesure d'interrompre leur saison de production dès le début du mois de septembre.

Soulignons enfin que l'Association des producteurs de tourbe du Québec a mis en ligne au cours de l'automne 2010 son site Internet.

# 6.3 - Emplois dans le secteur de l'extraction minière

### Martin Labrecque

En 2009, selon les données préliminaires, les activités d'extraction minière au Québec (minerai métallique et non métallique) créaient un total de 10 272 emplois répartis dans toutes les régions du Québec, principalement dans les régions de l'Abitibi-Témiscamingue, de la Côte-Nord et du Nord-du-Québec (tableau 6.10). Au total, en incluant les activités de première transformation et les entreprises de forage au diamant, le secteur minier au Québec comptait 13 745 emplois directs. Notons que les activités d'extraction de la tourbe, du sable et gravier et de la pierre concassée font en sorte que toutes les régions du Québec participent à l'activité minière.

En plus de ces emplois directs, le MRNF estime que les emplois indirects générés par le secteur minier représentent plus de 12 000 emplois pour les activités de production et plus de 3 000 pour les investissements en immobilisations et en construction de nouvelles mines. Au total, en y ajoutant les emplois liés à l'exploration minière, c'est près de 35 000 emplois directs et indirects que représente le secteur minier au Québec.²

## 6.4 - Activités de première transformation

#### Martin Labrecque

En plus des activités d'exploitation minière, le secteur minier au Québec comprend une industrie de première transformation. Le MRNF définit cette industrie comme regroupant les affineries, les fonderies (sauf les alumineries), et les usines d'argile, de chaux et de ciment. Cette industrie, dont les activités sont souvent situées à l'extérieur des régions minières, permet de répartir les retombées économiques de l'activité minière un peu partout au Québec. En 2009, l'industrie de première transformation comptait 4 300 travailleurs directs pour 13 usines situées principalement dans les régions de la Montérégie, de l'Abitibi-Témiscamingue et de Montréal.

#### LISTE DES AFFINERIES, DES FONDERIES ET DES USINES D'ARGILE, DE CHAUX ET DE CIMENT :

#### **Affineries**

- Canadian Copper Refinery (CCR), propriété de Xstrata, située à Montréal.
- Zinc électrolytique du Canada (CEZ), propriété de Société en commandite Revenu Noranda, située à Salaberry-de-Valleyfield.

^{2 -} Données estimées à partir du Modèle intersectoriel du Québec de l'Institut de la statistique du Québec, octobre 2010.

#### **Fonderies**

- Fonderie Horne, propriété de Xstrata Cuivre, située à Rouyn-Noranda.
- QIT Fer et titane, propriété de Rio Tinto, Fer et Titane (RTFT), située à Sorel.

#### Usine d'argile

• Hanson-Briqueterie Saint-Laurent, située à La Prairie en Montérégie.

#### Usines de chaux

- Usine de Marbleton, propriété de Graymont.
- Usine de Joliette, propriété de Graymont.
- Usine de Bedford, propriété de Graymont.
- Usine du Bas-Saint-Laurent, propriété de la Coopérative de producteurs de chaux du Bas-Saint-Laurent.

#### Usines de ciment

- Ciment St-Laurent, propriété de Holcim, située à Joliette.
- · Ciment Québec, située à St-Basile-de-Portneuf.
- Lafarge Canada, située à St-Constant en Montérégie.
- Colacem Canada, située à Grenville-sur-la-Rouge.

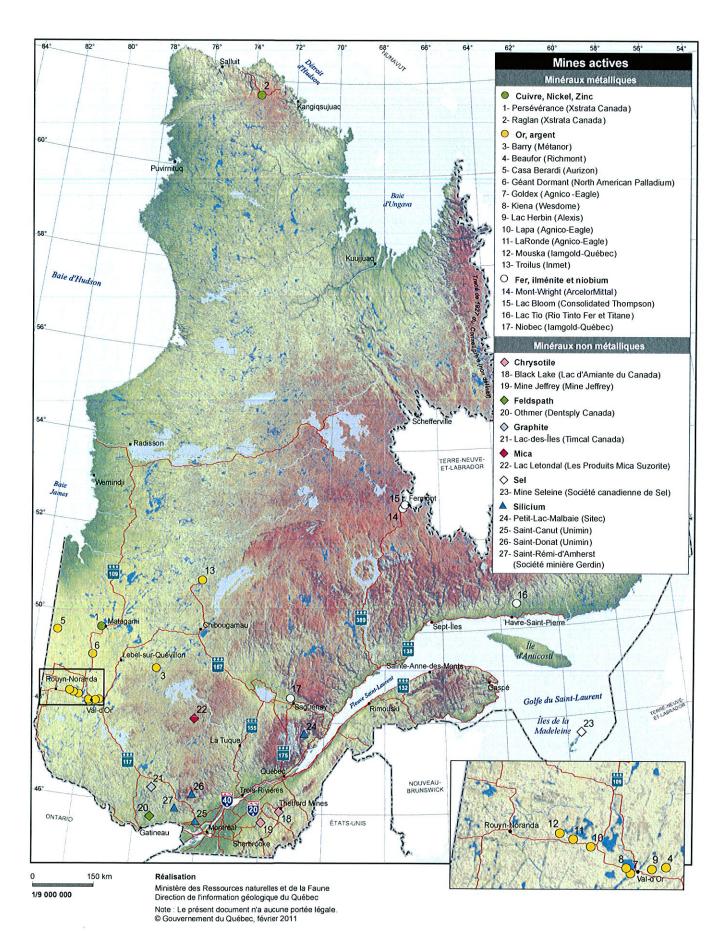



FIGURE 6.1. Mines actives au Québec en 2010.

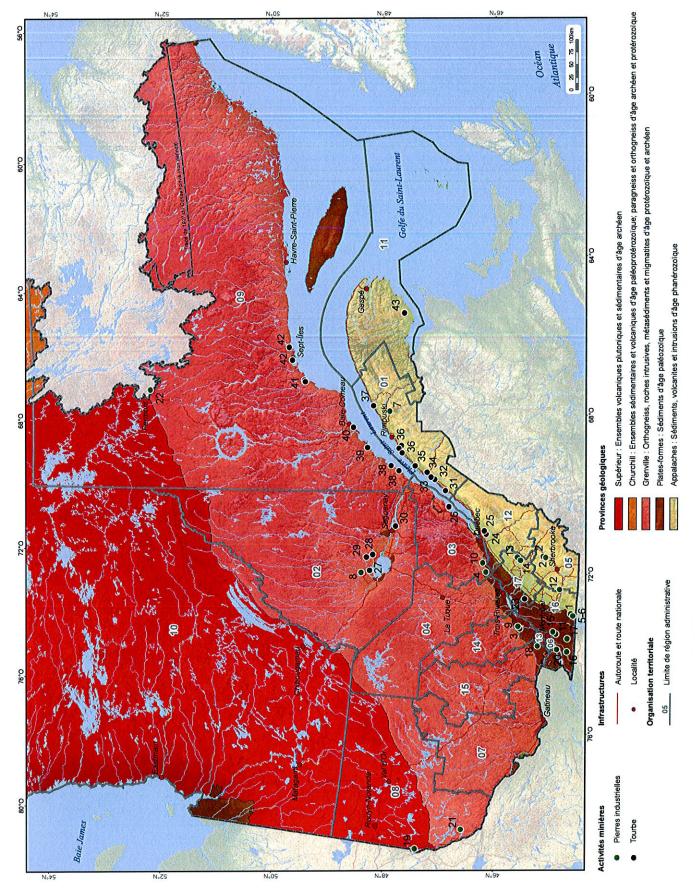



FIGURE 6.2. Carrières de pierres industrielles et de tourbe exploitées au Québec en 2010.

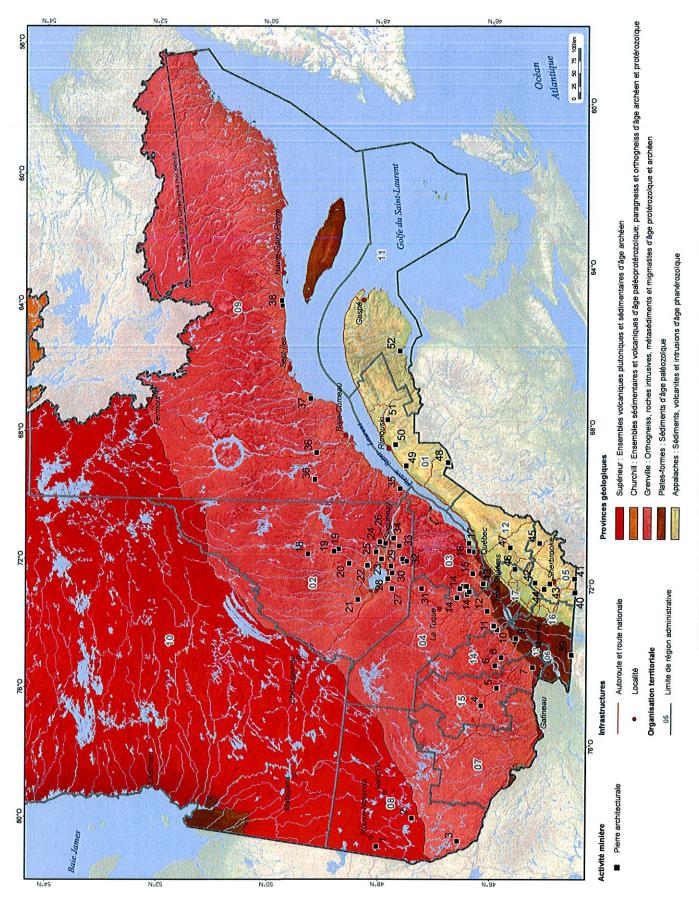



FIGURE 6.3. Carrières de pierre architecturale exploitées au Québec en 2010.

TABL	TABLEAU 6.5 - Production des substances métalliques au Québec	n des substances m	iétalliques au Québ	ec en 2010 (voir figure 6.1).					
Site	Canton / SNRC / Région administrative	Mine	Compagnie	Description sommaire du gisement et Type d'exploitation	Production : minerai extrait en 2010	Métal produit en 2010	Réserves (au 31 décembre 2010)	Nombre d'emplois en 2010	Année(s) de production (nombre)
Métau	Métaux usuels : Cu, Ni et Zn							BA/Also	
_	Daniel / 32F12, 13 / Nord-du-Québec	Persévérance (Mine Matagami)	Xstrata Canada Corporation	Type SMV dans une séquence de laves mafíques et felsiques. Mine souterraine	1 090 643 tm à 14,1 % Zn	139 350 tm Zn 10 005 tm Cu	pu	220	2008-20 (3)
~	35C09, 35H11 et 35H12 / Nord-du-Québec	Raglan (Fonderie - Sudbury/ Affinerie – Norvège)	Société minière Raglan du Québec Itée - Xstrata Nickel	massifs à la base iques;	1 279 778 tm à 2,45 % Ni 0,68 % Cu	28 237 tm Ni 7 134 tm Cu 567 tm Co	pu	762	1998-20 (13)
Métau	Métaux précieux : Au et Ag								
m	Barry / 32B13 / Abitibi- Témiscamingue	Barry (Usine Lac Bachelor -Desmaraisville	Ressources Métanor inc.	Veines de quartz-carbonate-albite associées à des zones de cisaillement. Mine à ciel ouvert	200 034 tm à 2,03 g/t Au 0,35 g/t Ag	406 kg Au 69 kg Ag	**** 18 M tm à 1,5 g/t Au	17	2008-20
4	Pascalis / 32C04 / Abitibi- Témiscamingue	Beaufor (Usine Camflo)	Mines Richmont inc.	l'intérieur de zones Ν, en bordure du amaque.	107 204 tm à 6,29 g/t Au	718 kg Au	*** 283 K tm à 7,58 g/t Au	100	1933-1951 1996-20 (33)
N	Casa-Berardi / 32E11 / Nord-du-Québec	Casa Berardi	Mines Aurizon Itée	Veines de quartz-carbonates-pyrite- arsénopyrite dans des zones de cisaillement ou des stockwerks.	722 746 tm à 6,76 g/t Au	4 389 kg Au 833 kg Ag	*** 4,4 M tm à 7,09 g/t Au	475	1988-1997 2006-20 (15)
9	Chaste / 32F04 / Nord-du-Québec	Géant Dormant	North American Palladium Ltd	Veines aurifères de quartz-sulfures au nd contact d'une intrusion dacitique et de coulées volcaniques.	pu	ри	рu	~125	1987-1991 1992-2008 2009-20
_	Dubuisson / 32C04 / Abitibi- Témiscamingue	Coldex	Mines Agnico-Eagle Itée	tourmaline avec Py- t des filons-couches granodiorite.	3 017 396 tm à 2,21 g/t Au	5 735 kg Au 48 kg Ag	рu	225	2008-20 (3)
80	Dubuisson / 32C04, 08 / Abitibi- Témiscamingue	Kiena	Mines d'Or Wesdome Itée	Brèche aurifère et veines de quartz localisées entre deux coulées komatiitiques. Mine souterraine	285 600 tm à 3,54 g/t Au, 0,6 g/t Ag	997 kg Au 166 kg Ag	*** 1,1 M tm à 2,79 g/t Au 0,55 g/t Ag	170	1981-2002 2006-20 (26)
6	Bourlamaque / 32C04 / Abitibi- Témiscamingue	Lac Herbin (Usine Camflo)	Corporation minière Alexis	Minéralisation aurifère associée à des réseaux de veines de quartz-pyrite dans des cisaillements recoupant le Batholite de Bourlamaque.	154 343 tm à 5,15 g/t Au (minerai usiné)	704 kg Au	рu	06 ~	2008-20 (3)
10	Dubuisson/ 32C04 / Abitibi- Témiscamingue	Lapa (Mine LaRonde)	Mines Agnico-Eagle Itée	Veine de quartz bleu-gris dans une roche volcanique à biotite-séricite. Mine souterraine	571 279 tm à 8,30 g/t Au	3 653 kg Au	рu	162	2009-20 (2)

Š	C - C Oduculu	ii des substantes	an Ynen	ec en 2010 (voir ngure 6.1).						
	SNRC/ Région	Mille	Compagnie	Description sommaire du gisement	Froduction: minerar Metal produit en extrait en 2010	Metal produit en 2010	Réserves (au 31 décembre 2010)	Nombre 2010) d'emplois	re Année(s) de Jois production	(s) de rtion
	administrative			et		: -				re)
ĺ				Type d'exploitation		į				
=	Bousquet /	LaRonde	Mines Agnico-Eagle	Lentilles de pyrite massive à semi-	2 803 286 tm à	62 544 tm Zn,	рu	724	1988-20.	.0.
	32DU8 / 45itib:			massive dans des voicanites teisiques, séricitisées et métamornhisées en	3,2 % Zn, n 23 % C ₁ ,	4 224 tm Cu, 5 064 kg Au			(23)	
	Abidibi-			schistes à andalousite et kvanite.		111 371 kg Ag			÷	
	remiscamingue					1 955 tm Pb	<del>-</del>			
1				Mine souterraine	0,42 % Pb					
15	Bousquet /	Mouska	gold-	Veines de quartz dans la diorite de 58 982 tm à		10 174 kg Au	* *	160	1991-20	.0.
	32D07 /	(Mine Doyon)	Québec inc.	Mooshla près du contact nord cisaillé.		319 kg Ag	175 Ktm à		(20)	
	Abitibi-			A Aliana Control of the Control of t		23/ cm Cu	12,9 g/t Au			
	Témiscamingue		. 1	ville souterraine			7,1 g/tAg 0,19 % Cu			-
13	1524 /	Troilus	ration minière	Au-Cu porphyrique		202 kg Au	Per	109	1997-2009	600
	32001 /		Inmer	dans une diorite.	d'extraction de mineral mais les	298 kg Ag 1 808 tm Cu			(14)	
	Nord-du-Quebec			Mine à ciel ouvert	stocks de minerai		<del></del>			
					accumulés ont été					
For	manual ar problem		The state of the s	· · · · · · · · · · · · · · · · · · ·	ualtes		Calle Called Cal		O 1940 A 1950 A	
<b>5</b>		30.50								
4	Normanville /	Mont-Wright	Mittal Mines	Formation de fer métamorphisée	pu	pu	pu.	~ 2 000	ŀ	.0.
	23814, 23811		Canada	de type Lac Superieur à nématite				(Mt-Wright	right (35)	
	et 23B09 /			speculaire				et Port		
	Cote-Nord			Mine à ciel ouvert				Carden	_	
15	23B14/	Lac Bloom		Formation de fer métamorphisée	pu	pu	pu	256	2010-20	0
	Côte-Nord		Thompson Iron	de type Lac Supérieur à hématite					E	
				Aine à ciel orvert						
16	Parker /	Lac Tio			pu	PE	Pu	~250	1950-20	.0.
	12L09 /		Fer et Titane inc.	l'anorthosite de la Suite intrusive					(19)	
	Côte-Nord			d'Havre-Saint-Pierre						
				Mine à ciel ouvert						
17	Simard / 22D11 /	Niobec	Gestion lamgold- Québec inc.	Pyrochlore dans la Carbonatite de St-Honoré	ри	nd	Pu	~240	1976-20 (35)	.0
	Saguenay-Lac-St-			Mine souterraine			*****			
	Jean									

# NOTES:

La liste des abréviations est présentée à l'annexe 2.

Plusieurs données compilées dans ce tableau demeurent préliminaires et ont été colligées auprès des sociétés avant la préparation de leur propre bilan officiel.

La distinction entre réserves prouvées et réserves probables est définie selon la norme canadienne 43-101.

Le lieu de traitément du minerai est indiqué entre parenthèses si différent de l'exploitation.

Les réserves mentionnées tiennent compte :

* des pertes de minerai

** de la dilution du minerai

*** de la dilution du minerai et de la dilution du minerai combinées

**** de ni l'un ni l'autre de ces facteurs

TAB	LEAU 6.6 - Producti	on des substances i	non métalliques au C	TABLEAU 6.6 - Production des substances non métalliques au Québec en 2010 (voir figure 6.2)						
Site	Canton / SNRC / Région administrative	Mine	Compagnie	Description sommaire du gisement et	Production mineral extrait 2010	Métal produit 2010	Réserves (au 31 décembre 2010)		ore plois	Année(s) de production (nombre)
ŀ				Type d'exploitation						
Chry	Chrysotile									
<del>©</del>	Irlande / 21L03 / Chaudière- Appalaches	Black Lake	Lac d'Amiante du Canada inc.	Réseau de veines dans des ultramafiques serpentinisées Mine à ciel ouvert	ри	· pu	pu .		~425	1958-20 (53)
19		Mine Jeffrey	Mine Jeffrey	Réseau de veines dans des ultramafites serpentinisées Mine à ciel ouvert	pu	pu	pu	~ 50		1878-20 (133)
Felds	Feldspath									
20	Portland / 31G11 / Outaouais	Othmer	Dentsply Canada Itd		ри	pu	pu	-10		2002-20 (9)
- Land	Granhite (			Mine à ciel ouvert						
21	Bouthiller / 31J05 / Laurentides	Lac-des-Îles	Timcal Canada inc.	Graphite en paillettes disséminées dans des calcaires cristallins	pu	pu	pu	<b>1</b>	55	1989-20 (22)
				Mine à ciel ouvert						
Mica										
22	Suzor / 31016 / Mauricie	Lac Letondal	Les Produits Mica Suzorite inc.	Intrusion alcaline lenticulaire contenant 80-85 % phlogopite Mine à ciel ouvert	· pu	pu	рu	~30	:	1974-20 (37)
Sel										
23	Îles-de-la- Madeleine/ 11N12 / Caspésie-Îles de la Madeleine	Mine Seleine	Société canadienne de Sel Itée	Diapir de sel d'âge cabonifère Mine souterraine	pu	pu	pu	. {	~160	1982-20 (29)
Silic	Silicium									
24	Charlevoix 3 / 21M15 / Capitale-Nationale	Petit-Lac-Malbaie e	Sitec s.e.c.	Quartzite Mine à ciel ouvert	v pu	pu	pu	~20		1977-20 (34)
25	Lac des Deux- Montagnes / 31C09 / Laurentides	Saint-Canut	Unimin Canada Itd	Grès du Groupe de Postdam Mine à ciel ouvert	pu	ри	рu	09~		1978-20 (33)
26	Lussier / 31J08 / Lanaudière	Saint-Donat	Unimin Canada Itd	Quartzite Mine à ciel ouvert	pu	pu .	pu	~15		1974-20 (37)
27	Amherst / 31G15 / Laurentides	Saint-Rémi- d'Amherst	Société minière Gerdin inc.	Quartzite Mine à ciel ouvert	pu	pu	ри	pu		1970-20

# NOTES:

Plusieurs données compilées dans ce tableau demeurent préliminaires et ont été colligées auprès des sociétés avant la préparation de leur propre bilan officiel. La distinction entre réserves prouvées et réserves probables est définie selon la norme canadienne 43-101.
Le lieu de traitement du minerai est indiqué entre parenthèse si différent de l'exploitation.
Les réserves mentionnées tiennent compte :

* des pertes de minerai

** de la dilution du minerai

** de pertes de minerai et de la dilution du minerai combinées

*** des pertes de minerai et de la dilution du minerai combinées

TABLE	AU 6.7 - Carrières de pi	TABLEAU 6.7 - Carrières de pierres industrielles exploitées au Q	es au Québec en 2010 (voir figure 6.2).				
SITE	GISEMENT	COMPAGNIES	DESCRIPTION SOMMAIRE DU GISEMENT	PRODUITS	CANTONS / SNRC	SNRC	RÉGION ADMINISTRATIVE
Calcair	Calcaire, dolomie et marbre						
-	Bedford	Graymont (Qc) inc. (division Bedford)	Calcaire de la Formation de Corey	Chaux vive, produits de calcaire broyé pour usage industriel, pierre concassée	Stanbridge / 31H03	11н03	16
7	Domlim #5 et #6	Graymont (Qc) inc. (division Marbleton)	Calcaire de la Formation de Lac Aylmer	Chaux vive, produits de calcaire broyé pour usage industriel, pierre concassée	Dudswell / 21 E12	E12	12
3	Jolichaux	Graymont (Qc) inc. (division Joliette)	Calcaire de la Formation de Deschambault	Chaux vive, produits de calcaire broyé pour usage industriel, pierre concassée	Lavaltrie / 31 103	03	14
4	Calco	Graymont (Portneuf) inc.	Calcaire de la Formation de Deschambault	Pierre concassée, produits de calcaire broyé pour usage industriel	Seigneurie de Grondines / 31109	: Grondines /	3
5	Saint-Armand, Messier-Missisquoi	Omya Canada inc. (division St-Armand)	Calcaire de la Formation de Strites Pond	Calcaire pulvérisé pour charges minérales	Seigneurie de 31H03	Seigneurie de Saint-Armand / 31H03	16
9	Saint-Armand Principale	Omya Canada inc. (division St-Armand)	Calcaire de la Formation de Strites Pond	Calcaire pulvérisé pour charges minérales, granules blanches pour terrazzo	Seigneurie de 31H03	Seigneurie de Saint-Armand / 31H03	16
7	La Rédemption	Coopérative des Producteurs de chaux du Bas-Saint-Laurent	Calcaire dolomitique de la Formation de Sayabec	Amendement magnésien	Awantjish / 22805	2805	
∞	Pères Trappistes	Les Calcites du Nord inc.	Marbre calcitique	Granules blanches pour la pierre artificielle, sables de maçonnerie, amendement	Pelletier / 32A16	<b>V16</b>	2
6	Ciment indépendant	Ciment St-Laurent (indépendant) inc.	Calcaire des groupes de Trenton et de Black River	Production de ciment	Lanoraye / 3/1103	103	14
10	Saint-Basile-sud	Ciment Québec inc.	Calcaire des groupes de Trenton et Black River	Production de ciment	Auteuil / 21 🛮 1	12	03
	Ciment Lafarge	Lafarge Canada inc.	Calcaire des groupes de Trenton et de Black River	Production de ciment	Sault-Saint-Louis / 31H05	ouis / 31H05	16
12	Soca	Agrégats Waterloo inc.	Marbre dolomitique de la zone de failles de Stukely-sud	Amendement à haute teneur en magnésie, granules à terrazzo, granulat décoratif	Stukely / 31F108	80	ر د
13	Saint-Ferdinand	Les Carrières St-Ferdinand inc.	Dolomie du Groupe d'Oak Hill	Amendement à haute teneur en magnésie, granulat décoratif	Halifax / 211,04	94	17
4	Trottier Mills	Les Carrières St-Ferdinand inc.	Dolomie du Groupe d'Oak Hill	Amendement à haute teneur en magnésie	Chester / 21 L04	04	17
Minér	Minéraux d'argile						
15	Briqueterie Saint- Laurent	Les Briques Hanson Itée	Shale de la Formation de Nicolet	Briques de parement	La Prairie / 31H06	1H06	16

TABLE	AU 6.7 - Carrières de p	TABLEAU 6.7 - Carrières de pierres industrielles exploitées au Q	es au Québec en 2010 (voir figure 6.2).				
SITE	GISEMENT	COMPAGNIES	DESCRIPTION SOMMAIRE DU GISEMENT	PRODUITS	CANTONS / SNRC	SNRC	RÉGION ADMINISTRATIVE
Silice							
16	Ormstown	La Compagnie Bon Sable Itée (division Ormstown)	Sable naturel	Sable lavé pour sablage au jet, fonderie, mélange pour colle à céramique	Beauharnois-2 / 31H04	2 / 31 H04	16
17	Sainte-Clotilde	Les Sables Silco inc.	Grès du Groupe de Postdam	Pierre concassée riche en silice pour cimenterie et ferro-silicium	Beauharnois 1 / 31H04	1/31H04	16
18	Saint-Joseph-du-Lac	La Compagnie Bon Sable Itée	Sable naturel	Sable lavé pour la maçonnerie et le sablage au jet	Lac-des-Deux 31H12	Lac-des-Deux-Montagnes-1 / 31H12	15
19	Saint-Bruno- de-Guigues	OPTA Minerals Inc.	Grès d'âge ordovicien	Sables pour filtration, fonderie, fracturation hydraulique	Guigues / 31M06	. 90W	8
50	Сһготаѕсо	Carrières Sud-Ouest inc.	Grès du Groupe de Postdam	Pierre concassée et granulats riches en silice pour cimenterie et ferro-silicium	Beauharnois/31H05	/ 31H05	16
21	Lac Beauchêne	Les Pierres du Nord inc.	Quarizite à muscovite de la Formation de Kipawa	Granules de quartz pour la production de pierre artificielle	Campeau / 31L10	1L10	8
22	Lac Daviault	Exploration Québec / Labrador inc.	Quartzite de la Formation de Wishart, Groupe de Cagnon	Granules de quartz pour la production de pierre artificielle	Lislois / 23B14	4	6

TARIE	All 68 - Carrières	TABLEALLS 8 - Carrières de nierre architecturale exploitées a	Ouéhec en 2010 (voir figure 6.3)					
SITE	LOCALISATION	COMPAGNIE		NOM COMMERCIAL	SNRC	RÉGION ADMINISTRATIVE		TITRE
-	Beaudry	Les Pierres du Nord	Schiste à biotite - PB	Schiste Nordic	32D03	8	8	BEX 86
2	Winneway	Polycor inc.	Granite - PD	Winneway	31M09	8	8	BEX 167
2	Winneway	Polycor inc.	Granite - PD	Winneway	31M09	8	В	BEX 323
3	Téminscaming	Les Pierres du Nord	Quartzite à muscovite - PB	Aventurine	31L10	8	B	BEX 355
4	Guénette	Rock of Ages du Canada Itée	Monzogranite - PD, UM	Rose Laurentien, Rose Automne	31]11	15	0	CM 79
52	Labelle	Les Pierres Mitchell inc.	Paragneiss - PB	-	31,107	15		BEX 330
2	Labelle	Les Pierres Mitchell inc.	Paragneiss - PB	-	31J07	15	8	BEX 337
5	Labelle	Les Pierres Naturelles Durand enr.	Paragneiss - PB		31J07	15	В	BEX 76
9	Saint-Donat- de-Montcalm	Carrières F. L. inc.	Gneiss - PB	t	31)08	14	8	BEX 140
7	Mirabel	Les Pierres Saint-Canut Itée	Grès - PB	Grès de Saint-Canut	31C09	15	¥ .	Aucun
8	Notre-Dame- de-la-Merci	A. Lacroix et Fils Granit Itée	Anorthosite - PD	Orion	31105	14	B	BEX 255
6	Joliette	Firstake Capital Corporation	Calcaire - PB	Joliette Gris, Joliette Jaune	31103	14		Aucun
10	Saint-Didace	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Rouge Nordix	31106	14	A	Aucun
1	Saint-Alexis- des-Monts	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Brun Automne	31106	4	8	BEX 463
1	Saint-Alexis- des-Monts	Polycor inc.	.Mangérite quartzifère - PD	Brun Newton	31106	4	8	BEX 174
=	Saint-Alexis- des-Monts	Granicor inc.	Mangérite quartzifère - PD, UB	Brun Automne	31106	4	<b>V</b> .	Aucun
<del>-</del>	Saint-Alexis- des-Monts	Polycor inc.	Mangérite quartzifère - PD	Brun Newton	31106	4	<b>V</b>	Àucun
12	Shawinigan	Les Entreprises Élie Grenier inc.	Gneiss - PB		31110	4	×	Aucun
13	Saint-Marc- des-Carrières	Graymont (Portneuf) inc.	Calcaire - PD	Calcaire Saint-Marc	31109	3	₹	Aucun
13	Saint-Marc- des-Carrières	Les Pierres de Rocaille du Québec	Calcaire - PB		31109	33	<b>V</b>	Aucun
14	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Bleu Atlantique	31P01	3	8	BEX 178, 372
14	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Vert Forêt	31P01	3	8	BEX 349
14	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Farsundite PD	Brun Saumon	31P01	3	В .	BEX 366, 367
4-	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Gneiss - PD	Silver Mist	31P01	3	8	BEX 378
4	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Farsundite - PD	Deer Brown, Vert Atlantique,	31P01	3	<b>aa</b>	BM 723, 746
				Deer Brown D.D.				

TABL	EAU 6.8 – Carrières d	TABLEAU 6.8 – Carrières de pierre architecturale exploitées	au Ouébec en 2010 (voir figure 6.3).				
SITE	LOCALISATION	COMPAGNIE		NOM COMMERCIAL	SNRC	RÉGION ADMINISTRATIVE	Æ TITRE
14	Rivière-à-Pierre	A. Lacroix et Fils Granit Itée	Farsundite, mangérite quartzifère - PD	Vert Forêt, Vert Atlantique, Bleu Atlantique	31P01	3	CM 488
4	Rivière-à-Pierre	Granicor inc.	Farsundite - PD, UB	New New	31116	3	Aucun
14	Rivière-à-Pierre	Granicor inc.	Farsundite - PD, UB	Abbey Rose	31P01	2	Aucun
<del>1</del> 4	Rivière-à-Pierre	Granicor inc.	Mangérite et jotunite quartzifères - PD, UM, UB	Vert Prairie	31P01	е	BEX 164, 165
4	Rivière-à-Pierre	Granicor inc.	Mangérite quartzifère, farsundite - PD, UB	Nara	31P01	En .	BEX 231
4	Rivière-à-Pierre	Granite D. R. C. inc., Gesrock	Farsundite - PD, PB, UB	Calédonia Canadien, Boca Foncé	31P01	m	Aucun
14	Rivière-à-Pierre	Polycor inc.	Farsundite - PD	Rose Cendré	31116	3	Aucun
4.	Rivière-à-Pierre	Polycor inc.	Farsundite - PD, UB	Calédonia, Calédonia Foncé	31P01	E	Aucun
4	Rivière-à-Pierre	Polycor inc.	Farsundite - PD, UB	Calédonia Foncé	31P01	m	BEX 33
4	Rivière-à-Pierre	Polycor inc.	Farsundite - PD	Rivièra	31116	3	BEX 114
14	Rivière-à-Pierre	Polycor inc.	Mangérite quartzifère - PD	Vert Boréal	31116	3	BEX 333
15	Saint-Raymond	A. Lacroix et Fils Granit Itée	Gneiss - PD	Rainbow	21L13	3	Aucun
16	Charlesbourg	Construction B. M. L.	Calcaire - PB	-	21L14	£.	Aucun
16	Québec	Les Pierres S.D. enr.	Calcaire - PB	1	21L14	3	Aucun
16	Sainte-Brigitte- de-Laval	Sablière Vallière inc.	Bloc de granit - PB	Į.	211.14	£	Aucun
17	Château-Richer	Carrière Laplante enr.	Calcaire - PB	-	21L14	8	Aucun
18	Chute-des-Passes	A. Lacroix et Fils Granit Itée	Gneiss - PD	New Rainbow	22E14	2	BEX 377
19	Chute-des-Passes	A. Lacroix et Fils Granit Itée	Anorthosite gabbroïque - PD	Nordic Café	22E06	2	BEX 471
19	Chute-des-Passes	Polycor inc.	Anorthosite gabbroïque - PD	Kodiac	22E06	2	BEX 402
20	Chute-des-Passes	Polycor inc.	Farsundite - PD	Astra	22E04	2	BEX 1
21	Saint-Thomas- Didyme	Granicor inc.	Mangérite quartzifère - PD, UB	Acajou	32A15	2	Aucun
22	Chute-du-Diable	Granicor inc.	Anorthosite - PD, UM, UB	Noir Canadien (Péribonka)	22D13	2	Aucun
22	Chute-du-Diable	Granicor inc.	Anorthosite - PD, UM, UB	Noir Canadien (Péribonka)	22D13	2	BEX 449
23	Saint-Nazaire	A. Lacroix et Fils Granit Itée	Leucogabbronorite - PD	Vert Nordix, Noir Atlantique, Noir Forêt	22D12	2	Aucun (2 carrières)
23	Saint-Nazaire	A. Lacroix et Fils Granit Itée	Leucogabbronorite - PD	Noir Atlantique, Vert Nordix	22D12	2	BEX 148
		-					

<b>FABLE</b>	AU 6.8 – Carrières de	e pierre architecturale exploitées a	TABLEAU 6.8 – Carrières de pierre architecturale exploitées au Québec en 2010 (voir figure 6.3).				
SITE	LOCALISATION	COMPAGNIE	TYPE DE ROCHE - PRODUITS!	NOM COMMERCIAL	SNRC	RÉGION ADMINISTRATIVE	TRATIVE TITRE
23	Saint-Nazaire	Granicor inc.	Leucogabbronorite - PD, UM, UB	Cambrien	22D12	2	BEX 332
23	Saint-Nazaire	Polycor inc.	Leucogabbronorite - PD, UM	Noir Cambrien	22D12	2	BM 705 (2 carrières)
24	Saint-Honoré	Les Pierres Naturelles Tremblay	Calcaire - PB	1	22D11	2	Aucun
25	Bégin	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Rose Atlantique	22D11	2	Aucun
25	Bégin	Granicor inc.	Mangérite quartzífère - PD, UB	Cranville	22D11	2	Aucun
26	Tremblay	Carrière 500	Calcaire - PB	-	22D06	2	Aucun
27	Saint-François- de-Sales	A. Lacroix et Fils Granit Itée	Mangérite quartzifère - PD	Vert Printemps	32A08	2	BEX 203
28	Chambord	A. Lacroix et Fils Granit Itée	Calcaire - PD	Pierre Argentée	32A08	2	Aucun
29	Saint-André-du- Lac-Saint-Jean	Jean-Guy Simard et Fils	Mangérite quartzitère - PD	Vert Saint-André	22D05	2	BEX 80
30	Métabetchouan	Polycor inc.	Farsundite - PD	Violetta Canadien	22D05	2	Aucun
31	La Tuque	Granitslab International inc.	Gabbro - PD	Noir Héritage	31P16	4	BEX 405
32	Réserve faunique des Laurentides	A. Lacroix et Fils Granit Itée	Farsundite - PD	Harmonie d'Automne	22D03	2	BEX 225
32	Réserve faunique des Laurentides	Granicor inc.	Mangérite quartzifère - PD, UB	Vert Laurentien	22D04	2	BEX 421
32	Réserve faunique des Laurentides	Polycor inc.	Jotunite quartzifère - PD, UM	Vert Laurentien	22D04	2	BEX 210
33	Laterrière	Intergestion GL inc.	Bloc de dolomie à stromatolite - PB	Pikauba	22D03	2	BEX 343
34	La Baie	Granicor inc.	Farsundite - PD, UB	Polychrome	22D07	2	Aucun
34	La Baie	Polycor inc.	Farsundite - PD	Polychrome	22D07	2	Aucun
34	La Baie	Sablière B Y inc.	Bloc de granit - PB	-	22D07	2	Aucun
35.	Grandes- Bergeronnes	Granicor inc.	Gneiss - PD, UB	Tadoussac	22C04	6	Aucun
36	Lac Poulin	Granijem inc.	Granit - PD	Nordic Frost	22F14	6	BEX 490
36	Manic 3	Granijem inc.	Gneiss - PD	Manic	22F15	6	BEX 489
37	Rivière-Pentecôte	Polycor inc.	Anorthosite - PD	Noir Nordique	22G14	6	BEX 155
38	Magpie	Granijem inc.	Syénite à hypersthène - PD	Anticosti	22108	6	BEX 436
38	Magpie	Polycor inc.	Syénite à hypersthène - PD	Picasso	22107	6	BEX 419
39	Havelock	Carrières Ducharme inc.	Grès - PB	Ducharme	31H04	16	Aucun (2 carrières)
40	Stanstead	Centre du Granite Beebe inc.	Granite - PD, PB	Gris Beverly	31H01	5	Aucun
40	Stanstead	Polycor inc.	Granodiorite - PD, UM	Gris Stanstead	31H01	5	Aucun
40	Stanstead	Rock of Ages du Canada Itée	Granodiorite - PD, UM	Gris de Stanstead	31H01	5	Aucun
14	Stanhope	Granicor inc.	Granodiorite - PD, UM, UB	Blanc Neige	21E04	5	Aucun

TABL	EAU 6.8 – Carrières	TABLEAU 6.8 - Carrières de pierre architecturale exploitées a	au Québec en 2010 (voir figure 6.3).			<del></del> -		
SITE	LOCALISATION	COMPAGNIE	TYPE DE ROCHE - PRODUITS'	NOM COMMERCIAL	SNRC	RÉGION ADMINISTRATIVE	RATIVE	TITRE
42	Asbestos	Ardobec inc.	Ardoise – PB	. (	21E12	2		Aucun
43	Bromptonville	Ardoise 55 inc.	Ardoise – PD, PB		21E05	5		Aucun
44	Melbourne	Maurice Houle	Ardoise - PD		31H09	5		Aucun
45	Saint-Sébastien	Polycor inc.	Granite - PD	Gris St-Sébastien	21E10	5		Aucun
46	Saint-Ferdinand	Les Carrières St-Ferdinand inc.	Grès, dolomie - PB	-	21104	17		Aucun
47	East Broughton	Les Pierres Stéatites inc.	Stéatite, roche à talc-carbonate, serpentinite - PE	I	211.03	12		Aucun
48	Saint-Marc-du- Lac-Long	Glendyne inc.	Ardoise - PB, UT	La Canadienne, La Québécoise	21N07	-		Aucun
49	Saint-Mathieu- de-Rioux	JC. Ouellette	Grès - PB		22C03	-		Aucun
49	Saint-Mathieu- de-Rioux	Les Pierres St-Mathieu enr.	Grès - PB	Grès Basques	22C02			BEX 460
. 50	Mont-Lebel	Entreprises Antoine Jean inc.	Siltstone - PB		22C08	-		Aucun
20	Mont-Lebel	Les Pierres Naturelles du Québec	Siltstone - PB	 	22C08	-	•	Aucun
51	Saint-Cléophas	Carrière Bernier	Siltstone - PB	<b>I</b>	22805	-		Aucun (2 carrières)
52	Maria	Polycor inc.	Brèche calcaire - PD, PA	Cascapédia	22A04	1		Aucun
1 Voi	Voir la légende des abréviations à l'anneve 2	wiations à l'appeve 2						

TARIE	AU 6.9 - Tourbières ext	TABLEALI 6.9 - Tourbières exploitées au Ouébec en 2010 (voir figure 6.2).	(voir figure 6.2).				
SITE	GISEMENT	COMPAGNIES	DESCRIPTION SOMMAIRE DU GISEMENT	PRODUITS	CANTONS / SNRC	JRC .	RÉGION ADMINISTRATIVE
23	Saint-Bonaventure	Fafard et Frères (division Saint-Bonaventure)	Tourbe	Tourbe de sphaignes, terreaux, composts, biofiltres	Upton / 31H15		4
24	Saint-Henri-de-Lévis	Premier Horticulture (division Saint-Henri)	Tourbe	Tourbe de sphaignes	Seigneurie Lauzon / 21L11	zon / 21L11	12
25	Saint-Charles	Les tourbes M.L. (division Saint-Charles)	Tourbe	Tourbe de sphaignes Terreaux	Seigneurie Lauzon et fief de La Martinière (Beauchamp) / 21L10	zon et fief de eauchamp) /	12
26	Îsles-aux-Coudres	Tourbières Pearl	Tourbe	Tourbe de sphaignes	Seigneurie Îsle-aux-Coudres / 21M08	aux-Coudres /	3
27	Sainte-Marguerite	Fafard et Frères (division Sainte-Marguerite)	Tourbe	Tourbe de sphaignes	Racine / 32A16		2
28	L'Ascension Ouest	Tourbières Lambert (division l'Ascension)	Tourbe	Tourbe de sphaignes	Garnier / 22D13	3	2
29	Saint-Ludger-de- Milot SW	Fafard et Frères (divison Milot)	Tourbe	Tourbe de sphaignes	Milot / 22D13		2
30.	La Baie	Gazon Savard Saguenay inc.	Tourbe	Blocs de tourbe de sphaignes et tourbe de sphaignes	Bagot / 22D07, 02	, 02	2
31	Rivière Ouelle	Tourbières Lambert (division Rivière-Ouelle)	Tourbe	Fourbe de sphaignes, terreaux, mousse florale	Seigneurie Rivière-Ouelle / 21N05	ère-Ouelle /	-
32	Saint-Alexandre	Tourbière Berger inc. (division Saint-Alexandre)	Tourbe	Tourbe de sphaignes	Seigneurie Islets-du-Portage et Lachenaie / 21N12	s-du-Portage 21N12	1
33	Notre-Dame- du-Portage	Premier Horticulture (division Tardif)	Tourbe	Tourbe de sphaignes	Seigneurie Terrebois / 21N12	ebois /	
34	Rivière-du-Loup	Premier Horticulture (division Premier)	Tourbe	Tourbe de sphaignes, terreaux, composts, endomycorrhyzes, biofiltres	Seigneurie Rivière-du-Loup et Cacouna / 21N13, 14	ère-du-Loup 1N13, 14	<del></del>
34	Rivière-du-Loup	Premier Horticulture (division Verbois)	Tourbe	Tourbe de sphaignes	Seigneurie Rivière-du-Loup et Cacouna / 21N13, 14	ère-du-Loup 1N13, 14	
34	Rivière-du-Loup	Premier Horticulture (division Saint-Laurent)	Tourbe	Tourbe de sphaignes	Seigneurie Rivière-du-Loup et Cacouna / 21N13, 14	ère-du-Loup 1N13, 14	_
34	Rivière-du-Loup	Tourbière Michaud Itée	Tourbe	Tourbe de sphaignes	Seigneuries Rivière-du-Loup et Cacouna / 21N13, 14	ière-du-Loup 1N13, 14	-
34	Rivière-du-Loup	Les tourbes M.1. (division Rivière-du- Loup)	Tourbe	Tourbe de sphaignes	Seigneuries Rivière-du-Loup et Cacouna / 21N13, 14	ière-du-Loup 1N13, 14	
34	Rivière-du-Loup	Tourbière Berger inc.	Tourbe	Tourbe de sphaignes, terreaux, granules de tourbe	Seigneuries Rivière-du-Loup et Cacouna / 21N13, 14	ière-du-Loup 1N13, 14	-
34	Rivière-du-Loup	Tourbière Henri Théberge et associés	Tourbe	Tourbe de sphaignes	Seigneuries Rivière-du-Loup et Cacouna / 21N13, 14	rière-du-Loup 1N13, 14	1

1	** + 0 / 118					
SITE	GISEMENT	SITE GISEMENT COMPAGNIES DU GISEMENT  ODESCRIPTION S  DU GISEMENT	O Wolf Ilgure 6:2).  DESCRIPTION SOMMAIRE  DU GISEMENT	PRODUITS	CANTONS / SNRC	RÉGION ADMINISTRATIVE
34	Rivière-du-Loup	Sun Gro Horticulture Canada Ltd (division St-Arsène)	Tourbe	Tourbe de sphaignes	Seigneuries Rivière-du-Loup et Cacouna / 21N13, 14	1
35	Isle-Verte, Est	Tourbière Réal Michaud et fils	Tourbe	Tourbe de sphaignes	Seingneurie Isle-Verte / 22CO3	
36	Saint-Eugène- de-Ladrière	La tourbière Yvon Bélanger	Tourbe	Tourbe de sphaignes	Seigneurie Nicolas-Rioux 03 / 22C07	
36	Saint-Fabien-sur-Mer	La tourière Rio-Val	Tourbe	Tourbe de sphaignes	Seigneurie Nicolas-Rioux 03 / 22C07	
36	Saint-Fabien	Tourbière du Port-Pic.	Tourbe	Tourbe de sphaignes	Seigneurie Nicolas-Rioux 03 / 22C07	-
36	Saint-Fabien	Tourbière Berger inc. (division Saint-Fabien)	Tourbe	Tourbe de sphaignes	Seigneurie Nicolas-Rioux 03 / 22CO7	
37	Rivière-Blanche	Permier Horticulture (division Saint-Ulric)	Tourbe	Tourbe de sphaignes	Matane / 22B13	
37	Saint-Uiric	Les tourbes M.L. (divison Saint-Uriric)	Tourbe	Tourbe de sphaignes	Matane / 22B13	-
38	Les Escoumins	Tourbières Lambert (division Anse-aux- Basques)	Tourbe	Tourbe de sphaignes	Bergeronnes / 22C06	6
38	La Petite Romaine	Tourbières Lambert (division Saint-Paul- du-Nord)	Tourbe	Tourbe de sphaignes	Ibervile / 22C06	6
39	Sainte-Thérèse Colombier	Sun Gro Horticulture Canada Ltd (division Colombier)	Tourbe	Tourbe de sphaignes	Betsiamites / 22C15	6
40	Pointe-Lebel	Pemier Horticulture (division Sogevex)	Tourbe	Tourbe de sphaignes	Manicouagan / 22F01	6
14	Port-Cartier Ouest	Les tourbes M.L. (division Port-Cartier)	Tourbe	Tourbe de sphaignes Blocs de tourbe de sphaignes	Babel / 22J02	6
14	Port-Cartier Ouest	Exportations Daniel Sage inc.	Tourbe	Tourbe de sphaignes	Babel / 22J02	6
42	Ville de Sept-Îles	Les tourbes M.L. (division tourbières Sept-Îles)	Tourbe	Tourbe de sphaignes	Letelier / 22105	6
42	Rivière Moisie	Premier Horticulture (division Sept-Îles)	Tourbe	Tourbe de sphaignes	Moisie / 22105	6
43	Saint-Jogues	Shigawake Organics Ltd	Tourbe	Tourbe de sphaignes	Hope / 22A03	11

TABLEAU 6.10 - Répartion des travailleurs directs du secteur minier par région administrative du Québec en 2009p.

Régions	Nombre d'emplois au total dans le secteur minier	Salaires et traitements versés (M\$)	Heures travaillées (en milliers)
01 Bas-Saint-Laurent	387	11	568
02 Saguenay–Lac-Saint-Jean	609	33	1 120
03 Capitale-Nationale	487	24	924
04 Mauricie	81	3	106
05 Estrie	365	16	645
06 Montréal	C	С	с
07 Outaouais	76	3	130
08 Abitibi-Témiscamingue	2 709	229	5 381
09 Côte-Nord	2 778	206	4 858
10 Nord-du-Québec	1 294	116	2 463
11 Gaspésie–Îles-de-la-Madeleine	c.	С	c .
12 Chaudière-Appalaches	С	С	С
13 Laval	c	С	c
14 Lanaudière	204	11	387
15 Laurentides	318	14	609
16 Montérégie	2 864	186	5 083
17 Centre-du-Québec	С	С	c
Forage au diamant	<i>7</i> 50	48	1 739
Total	14 495	989	26 898

c : données confidentielles.

Source : Institut de la statistique du Québec. Les données sont préliminaires.

N.B. Les données sur le forage carottier ne sont pas recueillies à l'enquête préliminaire et proviennent de l'enquête annuelle de 2008. Les emplois incluent ceux de première transformation (fonderies (sauf alumineries), affineries et usines de ciment, de chaux et d'argile).

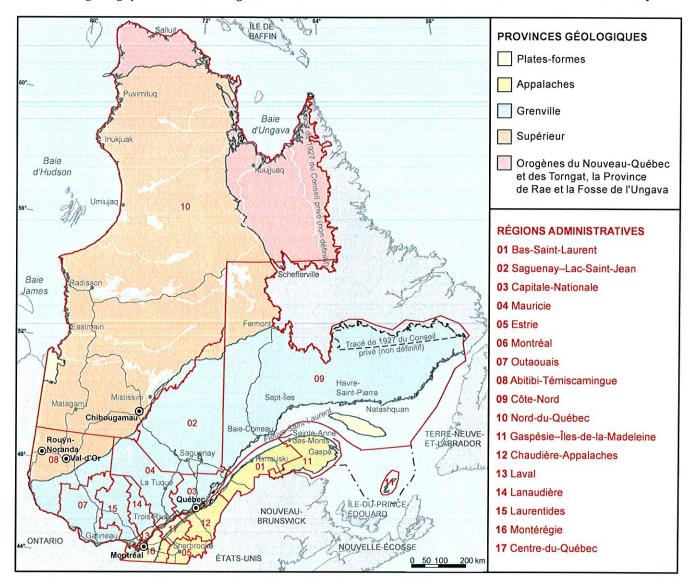
# **CHAPITRE 7 - RESTAURATION MINIÈRE**

### Philippe-André Lafrance

Au 31 mars 2010, un montant de 648,2 M\$ a été inscrit aux comptes publics afin d'effectuer la restauration et le suivi des sites miniers répertoriés dans le cadre du Programme national de réhabilitation des sites contaminés sous la responsabilité de l'État.

Pour l'année 2010-2011, c'est 5,3 M\$ qui ont servi à la restauration minière. Les principales activités se sont déroulées dans la région de l'Abitibi-Témiscamingue où environ 80 % de ce montant a été dépensé. Les sites miniers Aldermac (2,6 M\$) et Manitou (1,1 M\$), où les travaux de restauration se poursuivent, ont été les endroits où il y a eu le plus d'activités. Les

régions du Nord-du-Québec (0,88 M\$) et de l'Estrie (0,28 M\$) furent aussi l'objet de travaux de restauration. Pour la région du Nord-du-Québec, les travaux de restauration du site minier Opémiska sont presque terminés. Des retouches au niveau de la végétation sont à prévoir en 2011. Pour le site minier Principale, l'étude de caractérisation a débuté à l'automne 2010 et se terminera à l'été 2011. La préparation des plans et devis de restauration de l'ancien site Barvue a été entrepris en novembre 2010. En ce qui concerne l'important projet de nettoyage des 18 sites d'exploration au Nunavik jugés prioritaires, il est presque complété. Du côté de l'Estrie, les travaux de restauration du projet Eustis sont presque complétés.


Identification du site minier	Région	Superficie approximative du site (hectares)	Période d'activité	Métal ou minéral extrait	Avancement des travaux
Sites où les travaux son	t en cours				
Aldermac	8	170	Exploité de 1932 à 1943	Or, argent et cuivre	Travaux de restauration en cours
Barvue	8	38	Périodes d'activités de 1952 à 1957	Zinc et argent	Élaboration du plan de restauration débutée à l'automne 2010
Bevcon	8	60	Exploité de 1951 à 1965	Or et argent	Travaux de végétalisation presque terminés
East Sullivan	8	175	Exploité de 1949 à 1967	Cuivre et zinc	Travaux de restauration en cours
Eustis	5	16	Exploité de 1880 à 1939	Pyrite et cuivre	Travaux de végétalisation presque terminés
Manitou	8	200	Plusieurs périodes d'activités : de 1942 à 1979 et de 1992 à 1994	Or, argent, zinc et cuivre	Travaux de restauration en cours
Opémiska	10	170	Exploité de 1954 à 1991	Cuivre, or et argent	Travaux terminés
Principale	10	400	Exploité de 1955 à 2008	Cuivre, or et argent	Étude de caractérisation débutée à l'été 2010
Sites d'exploration du Nunavik (18 sites majeurs)	10	Indéterminée			Travaux de nettoyage en cours
Sites où les travaux ont	débuté à la	fin de l'année 2010			
Beattie	8	140	Exploité de 1933 à 1956	Or et argent	Appel d'offres pour l'étude de caractérisation du site
Preissac Molybdénite A	8	12	Exploité entre 1962 et 1971	Molybdène et bismuth	Visites de terrain et travaux d'urgence

# **Annexe I**

Subdivisions géologiques, limites des régions administratives et bureaux de service à la clientèle des mines au Québec.

#### ANNEXE I

Subdivisions géologiques, limites des régions administratives et bureaux de service à la clientèle des mines au Québec.



#### CHIBOUGAMAU

Direction de l'expertise Énergie-Faune-Forêts-Mines-Territoire du Nord-du-Québec

Ministère des Ressources naturelles et de la Faune 624, 3e Rue

Chibougamau (Québec) G8P 1P1 Téléphone: 418 748-2647 Télécopieur: 418 748-3359

#### MONTRÉAL

Direction des affaires régionales de l'Estrie-Montréal-Montérégie et de Laval-Lanaudière-Laurentides

Ministère des Ressources naturelles et de la Faune 545 Crémazie est, 8e étage Montréal (Québec) H2M 2V1 Téléphone: 514 873-2140 Télécopieur: 514 873-8983

#### **ROUYN-NORANDA**

Direction des affaires régionales de l'Abitibi-Témiscamingue

Ministère des Ressources naturelles et de la Faune 70, avenue Québec Rouyn-Noranda (Québec) J9X 6R1

Téléphone: 819 763-3388 Télécopieur: 819 763-3216

#### QUÉBEC

Direction des affaires régionales de la Capitale-Nationale et de la Chaudière-Appalaches

Ministère des Ressources naturelles et de la Faune 1685, boulevard Wilfrid-Hamel, bureau 1.14 Québec (Québec), G1N 3Y7 Téléphone: 418 643-4680 Télécopieur: 418 644-8960

#### VAL-D'OR

Direction des affaires régionales de l'Abitibi-Témiscamingue

Ministère des Ressources naturelles et de la Faune 420 boul. Lamaque Val-d'Or (Québec), J9P 3L4

Téléphone: 819 354-4611 Télécopieur: 819 354-4367

# Annexe II

# Légende des abréviations utilisées dans les tableaux

## **ANNEXE II**

#### Légende des abréviations utilisées dans les tableaux.

Travaux de	prospection et de géologie	Fe	Fer
	· · ·	Ga	Gallium
E ·	Échantillonnage	Li,O	Oxyde de lithium
Eb	Échantillonnage de bloc pour la pierre architecturale	Mg	Magnésium
Emi	Étude minéralogique	Mo	Molybdène
Ep	Essai de polissage	Nb	Niobium
Ev (tm:g/t)	Échantillonnage en vrac incluant le tonnage		
· ·	ou (tm:% Xx) et la teneur (tonne métrique : gramme	Nb ₂ O ₅	Oxyde de niobium
	par tonne) ou (tonne métrique : % Xx)	Ni	Nickel
G	Levé géologique	P	Phosphore
Int <del></del> Sat <del></del>	Interprétation-d'images satellites	P ₂ O ₅	Oxyde de phosphore
Pg.	Travaux de prospection et de géologie non définis	Pd	Palladium
Pr	Prospection	<b>P</b> t	Platine
	· ·	Pb	Plomb
\$ (nb:m)	Sondage au diamant (nombre : mètres totals)	<b>R</b> b	Rubidium
Sci (nb:m)	Sondage de circulation inversée	Ta	Tantale
T 	Excavation de tranchée et décapage	$Ta_2O_5$	Oxyde de tantale
Тс	Analyses et tests de caractérisation (tourbe)	Te	Telfure
		Th	Thorium
Levés de gé	ochimie	Ti	Titane
Gc	Levé géochimique non définí	Ü	Uranium
		Ü,O,	Oxyde d'uranium
Gc(e)	Levé géochimique d'esker	V V	Vanadium
Gc(h)	Levé géochimique d'humus		Oxyde de vanadium
Gc(l)	Levé géochimique de fond de lac	V₂O₅ W	
Gc(ro)	Levé géochimique de roche		Tungstène
Gc(ru)	Levé géochimique de ruisseau	Y	Yttrium
Gc(s)	Levé géochimique de sol	Y ₂ O ₃	Oxyde d'yttrium
Gc(t)	Levé géochimique de till	Zn	Zinc
	•	Zr	Zirconium
1	Contract of	$ZrO_2$	Oxyde de zirconium
Levés de gé	орпуѕіque		
<b>G</b> p	Levé géophysique non défini		•
GpEl	Levé électrique	Unités de :	mesure
GpEm	Levé électromagnétique		
GpGr	Levé gravimétrique	c/t	Carat/tonne
Gры СрМа	Levé magnétométrique (magnétique)	G	Milliard
		g/t	Gramme par tonne
GpMt CoPo	Levé magnétotellurique	K	Mille (nombre)
GpRa	Levé radiométrique	M	Million
GpSi	Levé sismique	tm	Tonne métrique
(A) aerien, (i	F) forage et (S) au sol	tm/j	Tonne métrique par jour
		,	, ,
Autres type:	s de travaux		
EF	Étude de faisabilité et/ou de marché	Produits et	t usages de la pierre architecturale
Env	Étude environnementale	riodules ci	t usuges de la pierre aremitecturale
Er	Estimation des réserves et des ressources	PA	Pierre décorative
ET	,	₽₿	Pierre à bâtir ou pierre d'aménagement paysager, dalle, pavé
	Etude d'évaluation technique Travaux de restauration de site minier	PD	Pierre dimensionnelle (bloc)
R	•	PE	Pierre ollaire ou pierre réfractaire
TM	Test métallurgique	UB	Bordure de trottoir
		UM	Monument
Substances		UŤ	Tuile à toiture
Ασ	Argent	01	rane a contact
Ag	•	Autroc abii	áviations
Au Be	Or Regullium	Autres abro	CYIQUOIIS .
	Beryllium Biomuth	CA	Certificat d'autorisation
Bi C-	Bismuth	MDDEP	Ministère du Développement durable, de l'Environnement
Co	Cobalt		et des Parcs du Québec
Cr	Chrome	· Nd	Données non disponibles
Cs	Césium		
Cu	Cuivre	italique	Travaux d'exploration réalisés au chantier
ÉGP	Éléments du groupe du platine	gras	Projet à l'étape de la mise en valeur
ÉTR	Éléments du groupe du platine Éléments des terres rares	gras	rrojet a retape de la mise en valeur
		gras	rrojet a r'etape de la mise en valeur

# **Annexe III**

# Le processus de développement minéral

# **ANNEXE III**

Valoris des ressourc	sation es minérales		L.	xploration	n	
Stade	VRM	EX - 1	EX - 2	EX - 3	EX - 4	EX - 5
Travaux	Levés, recherches et synthèses métallogéniques.	Planification de l'exploration.	Reconnaissance régionale et levés.	Prospection et levés au sol sur les anomalies.	Vérification des anomalies et indices.	Découverte et délimitation d'un gîte à tonnage évalue
Durée des travaux				1 à 5 ans		
Objectifs	Fournir l'information et les outils pour développer les ressources minérales dans une perspective de développement durable.	Choisir les minéraux et métaux cibles. Établir les objectifs et stratégies. Choisir des régions cibles prometteuses.	Trouver des anomalies régionales et locales. Choisir les cibles les plus prometteuses.	Acquérir des propriétés, Confirmer la présence, la position et les caractéristiques des anomalies.	Vérifier la cause des anomalies. Trouver des indices minéralisés. Acquérir d'autres propriétés selon le besoin.	Découvrir, confirmer et délimiter un premier inventaire minéral du gîte. Évaluer son potentiel économique de façon préliminaire. Première étude de pré-faisabilité.
Méthodes d'évaluation	Levés, recherches et synthèses géoscientifiques, métallogéniques et économiques par les gouvernements, les universités et les autres organismes de recherche.	Études et choix des métaux et minéraux. Revue et synthèse de l'information géologique et métallogénique pour diverses régions. Revue du contexte légal et politique. Déduction et intuition.	Télédétection, photographies aériennes, géophysique aéroportée. Prospection, géologie et géochimie. Évaluation et sélection des anomalies.	Prospection et levés géoscientifiques au sol. Revue et sélection des anomalies d'intérêt.	Cartographie géologique et autres levés. Tranchées, échantillonnages et forages. Évaluation des résultats et sélection des cibles.	Décapages, tranchées cartographie, échantillonnages, forages et géophysique. Inventaire préliminaire du gîte. Caractérisation de l'environnement.
Résultats visés	Base de données, cartes et modèles	Projets d'exploration	Anomalies régionales	Anomalies locales	Indices minéralisés	Gite à tonnage évalué
nventaire minéral	POTENTIEL MINÉRAL	NOUVELLES RESSOURCES MINÉRALES NON IDENTIFIÉES RESSOURCES SPÉCULATIVES, HYPOTHÉTIQUES, OU MODÉLISÉES MINÉRALES INFÉRÉES				
nvestissement Risque	Modéré Faible à modéré	Faible niveau d'investissement mais qui s'accroît. Risque de perte très élevé, mais qui décroît en fonction du succès des travaux.				

### **ANNEXE III**

	Mise	en valeu	7		
Stade	MV - 1	MV - 2	MV - 3	MV - 4	
Travaux	Définition du gîte à tonnage évalué,	Définition des paramètres techniques. (Ingénierie)	Définition des paramètres économiques.	Étude de faisabilité.	
Durée					
des travaux		3 à	8 ans		
Objectifs	Définir les limites, les contrôles et la distribution interne de la minéralogie et des teneurs du gîte. Planifier et préparer l'ingénierie du projet.	Établir la faisabilité technique. Établir les plans, cédules et estimations pour le projet minier.	Établir les paramètres pour l'évaluation économique et financière. Évaluer les sources de financement.	Garantir la validité des données, hypothèses et évaluations. Décider d'entreprendre le projet ou non.	
Méthodes d'évaluation	Définition par cartographie, échantillonnages, forages en surface et sous terre. Acquisition de données pour	Échantillons en vrac. Essais pilotes, ingénierie et estimation des coûts de la mine, du procédé de	Étude des marchés, des prix et des aspects financiers. Analyse des risques techniques, économiques,	Révision exhaustive de toutes les donnée du projet. Évaluation de la rentabilité, des risques et des aspect positifs du projet.	
	l'ingénierie du projet. Levés détaillés du site et de l'environnement.	concentration, de l'infrastructure, de la protection de l'environnement et de la restauration du site.	financiers, sociaux, politiques et environnementaux.		
Résultats	Définir les ressources minérales	Déterminer les techniques	Faisabilité techno-économique	Gisement Décision de mise en	
visés		d'extraction		production	
Inventaire minéral	RESSOURCES MINÉRALES INDIQUÉES ET MESURÉES				
Investissement Risque	Investissement beaucoup plus considérable et qui s'accroît. Risque d'échec élevé, mais qui décroît en fonction du succès des travaux.				
			Ressources nat	turollos	
			et Faune	bec * *	

## ANNEXE III

Les étapes du proce	essus de développe	ment minéral.		
	Aménag	gement		
	du comple	xe minier		
Stade	ACM-1 (P réparation et développement)	ACM-2 (Exploitation minière)	ACM-3 (Restauration du site)	
Travaux	Construction. Mise en œuvre de la mine.	Production et mise en marché.	Fermeture de la mine. Restauration du site.	
Durée des travaux		2 à 3 ans		
Objectifs	Réaliser le développement de la mine et les constructions requises en respectant le budget et l'échéancier P réparer la mise en œuvre de la mine et de l'usine.	Réaliser la production commerciale selon le taux et les spécifications prévues, Profitabilité du projet dans une perspective de développement durable.	Restaurer le site de la mine à un état sécuritaire et visuellement acceptable et la qualité de l'environnement compatible avec l'usage futur	
Méthodes d'évaluation	Gestion de projet et gestion de la qualité des travaux. Plan de mise en œuvre et entraînement du personnel.	Gestion de la production en vue de l'amélioration continue de la qualité et du rendement. Exploration, mise en valeur et aménagement de nouvelles zones sur le site minier et hors d'un site minier.	Mise hors service de la mine. Restauration de l'environnement et surveillance.	
Résultats visés	Début de l'exploitation	Profitabilité	Site restauré	
Inventaire minéral	RÉSERVES DE MINERAI PROUVÉES ET PROBABLES		RESSOURCES MINÉRALES	
Investissement Risque Risque modéré à faible.				
		Ressources na et Faune Qué	eturelles	

**Source** : Modifications coordonnées par S. Lacroix, août 2001, au Rapport annuel de SOQUEM, 1976-77, pages 4-5 et Vallée, M., 1992. Guide to the Evaluation of Gold deposits. CIM, Special Volume, page 4.

Conception graphique : Charlotte Grenier

# Annexe IV Références

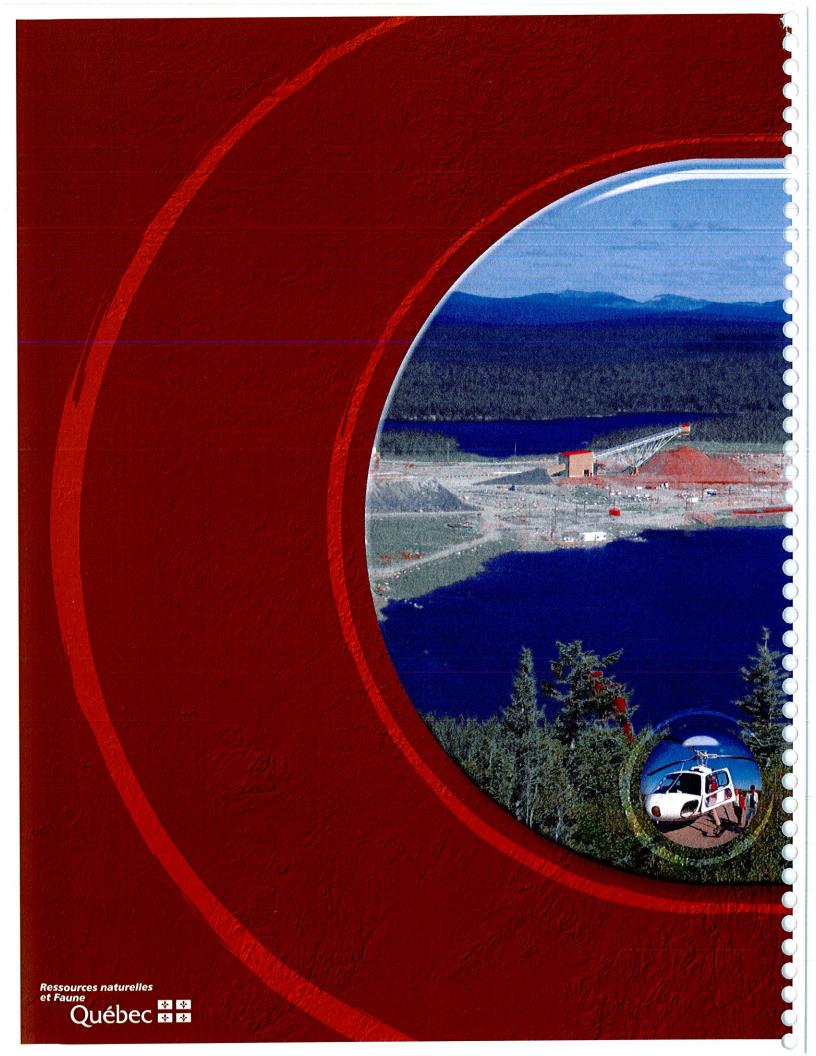
#### **ANNEXE IV**

#### Références

D'AMOURS, I.—MAURICE, C.—GOSSELIN, C., 2010—Cibles d'exploration au sud de LG4, Baie-James, Québec : interprétation d'un nouveau levé géophysique. Ministère des Ressources naturelles, de la Faune et des Parcs, Québec; PRO 2010-03, 12 pages.

MRNF, 2010 – Nouvelles cibles pour l'exploration minérale – Travaux géoscientifiques 2010. Ministère des Ressources naturelles, de la Faune et des Parcs, Québec; PRO 2010-05, 8 pages.

CLARK, T. – WARES, R., 2004 – Synthèse lithotectonique et métallogénique de l'Orogène du Nouveau-Québec (Fosse du Labrador). Ministère des Ressources naturelles, de la Faune et des Parcs, Québec; MM 2004-01, 180 pages.


JAMES, D.T. – CONNELLY, J.N. – WASTENEYS, H.A. – KILFOIL, G.J., 1996 – Paleoproterozoic lithotectonic division of the southeastern Churchill Province, Western Labrador. Canadian Journal of Earth Sciences; volume 33, pages 216-230.

LAMOTHE, D., 1994 – Géologie de la Fosse de l'Ungava, Nouveau-Québec. Ministère des Ressources naturelles, Québec; MM 94-01, pages 67-74.

MOUKHSIL, A. – LEGAULT, M. – BOILY, M. – DOYON, J. – SAWYER, E. – DAVIS, D.W., 2003 – Synthèse géologique et métallogénique de la ceinture de roches vertes de la Moyenne et de la Basse Eastmain (Baie-James). Ministère des Ressources naturelles, de la Faune et des Parcs, Québec; ET 2002-06, 55 pages.

PRICEWATERHOUSECOOPERS, 2010 – Mine – Back to the Boom... Review of global trends in the mining industry – 2010. PricewaterhouseCoopers, United Kingdoms; 48 pages (anglais seulement)

WARDLE, R.J. – JAMES, B. – SCOTT, D.J. – HALL, J., 2002 – The Southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogen. Canadian Journal of Earth Sciences; volume 39, nº 5, pages 639-663.

